A		Reg. No. :								
		Question Paper	r Code: 54023							
	B.E.	/B.Tech. DEGREE EX	KAMINATION, NOV 2019							
		Fourth S	Semester							
		Mechanical	Engineering							
	15UMA	423 - STATISTICS A	ND NUMERICAL METHO	DS						
	(Regulation 2015)									
		-	may be permitted)							
Dura	ation: Three hours	Υ.		kimum: 100 Marks						
	Answer ALL Questions									
			x 1 = 10 Marks)							
1.	If an individual rejec	ets a true null hypothes	is, then she/he has	CO1- R						
	(a) Type I error	(b) Type II error	(c)) one tailed	(d) two tailed						
2.	2. The form of the alternative hypothesis can be: CO1- R									
	(a) one-tailed		(b) two-tailed							
	(c) neither one nor t	wo-tailed	(d) Type I error							
3.	Degree of freedom for	or SSE in RBD is		CO2- R						
	(a) (c-1)(r-1)	(b) (c-1)	(c) (r-1)	(d) n-k						
4.	The conclusion of A	NOVA based on		CO2- R						
	(a) F-test	(b) t-test	(c) Chi-Square test	(d) Normal						
5.	Iteration method is a			CO3- R						
	(a) direct method		(c) self correcting method	(d) step by step						
6.	What is the order of	convergence of Newto	_	CO3- R						
	(a) 1	(b) 2	(c) 3	(d) 4						
7.		ence operator is denote	• •	CO4- R						
0	(a) nable	(b) delta	(c) omege	(d) alpha						
8.	-	gence of cubic spline is		CO4- R						
0	(a) 4 What is the restricti	(b) 6	(c) 8 intervals for Simpson's 2/8	(d) 2						
9.	rule?		intervals for Simpson's 3/8							
	(a) Odd	(b) Even	(c) Multiple of 3	(d) None						
10.	-	s applicable only when		CO5- R						
	(a) multiple of 3	-	-	(d) multiple of 24						
		PART - B (5 x)	x 2= 10 Marks)							

11.	Define null hypothesis and alte		CO1- R					
12.	What are the principles of desi		CO2- R					
13.	State Newton's algorithm for f		CO3- R					
14.	Find the divided difference table for the following data							CO4- App
	_							
	t	f(x)	5	29	109			

15. Evaluate $\int_{-1}^{1} |x| dx$ with two sub intervals by Trapezoidal rule

 $PART - C (5 \times 16 = 80 Marks)$

16. (a) (i) Two independent samples of 8 and 7 items respectively had CO1- App the following values.

Sample 1	9	11	13	11	15	9	12	14
Sample 2	10	12	10	14	9	8	10	

Is the difference between the means of the samples significant?

(ii) 1,000 students at college level are graded according to their CO1- App (8)I.Q and their economic conditions. Use the Chi-Square test to find out whether there is any association between economic conditions and the level of I.Q

Economic	I.Q						
Conditions	High	Medium	Low	Total			
Rich	160	300	140	600			
Poor	140	100	160	400			
Total	300	400	300	1000			
Or							

(b) (i) Two independent samples of sizes 9 and 7 from a normal CO1- App population had the following values of the variables. Do the estimates of the population variances differ significantly at 5% level?

Sample1 18 13 12 15 12 14 16 14 15 16 19 13 16 18 13 15 Sample2

(ii) The theory predicts that the proportion of beans in the four CO1- App (8)groups A,B,C, and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Do the experimental results support the theory.

CO₅- App

(8)

(8)

17. (a) A vertical trail was conducted at a Research station. The research CO2- Ana (16) adopted for the same was five Randomized blocks of 6 plots each the yields in lb per plot (of 1/20) of an area obtained from the experiment are given in the following table

Blocks	Varieties							
DIOCKS	V ₁	V ₂	V ₃	V_4	V ₅	V ₆		
Ι	30	23	34	25	20	13		
II	29	22	28	25	28	32		
III	56	43	43	31	49	17		
IV	38	45	36	35	32	20		
V	44	51	23	58	40	30		

Analyse the design and comment on your findings

Or

(b) The following data resulted from an experiment to compare three CO2- Ana (16) burners B1, B2, and B3. A Latin square design was used as the tests were made on 3 engines and were spread over 3 days.

	Engine-1	Engine-2	Engine-3
Day-1	B1-16	B2-17	B3-20
Day-2	B2-16	B3-21	B1-15
Day-3	B3-15	B1-12	B2-13

18. (a) (i) Solve the system of equations by Gauss seidel method CO3- App (8)

27x + 6y - z = 85x + y + 54z = 1106x + 15y + 2z = 72

(ii) Using Gauss Jordan method find the inverse of the matrix CO3- App (8) $\begin{pmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{pmatrix}$

3

(b) (i) Find a root of $x \log_{10} x - 1.2 = 0$ by Newton Raphson method CO3- App (8) correct to three decimal places.

(ii) Using Gauss-Jordan method, find the inverse of CO3- App (8)

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & -3 & 3 \\ -2 & -4 & -4 \end{bmatrix}.$$

19. (a) Find f(8) by Newton's divided difference formula for the CO4- Ana (8) following data

x:	4	5	7	10	11	13
<i>f</i> (x):	48	100	294	900	1210	2028

(ii) Find the polynomial f(x) by using Lagrange's formula and CO4- Ana (8) hence find f(3) for

Х	0	1	2	5			
f(x)	2	3	12	147			
Or							

(b) The population of a town is as follows.

CO4- Ana (16)

· · · ·				1		
Year	1941	1951	1961	1971	1981	1991
Population in Lakhs	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

20. (a) (i) Calculate $\int_{0.5}^{0.7} e^{-x} \sqrt{x} dx$ taking 5 ordinates by Simpson's 1/3 CO5-E (8)

rule.

(ii) Evaluate $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sqrt{\sin(x+y)} \, dx \, dy$ by using double integration of CO5- E (8) Simpson's rule

Or

(b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Romberg's method correct to 4 decimal CO5- E (16) places. Hence deduce un approximate value of π