A		Reg. No. :											
		Question Pap	er C	ode	: 53	022							
	B.E.	/ B.Tech. DEGREE	EXA	MIN	ATIO	DN, I	NOV	201	9				
		Third	l Sem	ester									
		Computer Sc	ience	Engi	neer	ing							
	15UMA322 - P	ROBABILITY, STA	TIST	ICS	ANE	QU	EUE	EINC	6 SY	STE	MS		
		(Common to Information	ation	Tech	nolog	gy br	anch	ı)					
		(Regul	lation	2015	5)								
		(Statistical tables	are m	ay b	e per	mitte	ed)						
Dur	ation: Three hours	Answer A	ALL Q	Juest	ions				Max	imun	n: 1(0 M	arks
		PART A - (1	0 x 1	= 10	Mar	ks)							
1.	The mean and variance of the Binomial distribution are 4 and 3 respectively. Find P(X=0).								CO	1- R			
	(a) $(1/4)^{16}$	(b) 1/4	(c) (3	/4) ¹⁶					(d)3/	4		
2.	Find λ , if X follows Poisson Distribution such that P(X=2)=3P(X=3). CO1-3							1- R					
	(a) 3	(b) 4	(c) 2						(d) 1			
3.	Cov(X, Y) =											CO	2- R
	(a) $E(XY) - E(X) E$	(Y)	(b) E((X')E	E(Y')	– E	(X.Y	<u>/</u>)				
	(c) $E(X)E(Y) - E(X.Y)$		(d) E((XY)	– E(2	X')E	(Y'))				
4. If X and Y are independent RVs with variances 8 and variance of 3X+4Y.					5.fi	nd t	he			CO	2- R		
	(a) 152	(b) 153	(c) 16	53					(d) 1	62		
5.	The number of experimental units in the block is called as CO2						3- R						
	(a) Block design (b) Block size (c) Complete block						lock	unit		(d) U	Jnit s	size	
6.	A	_ is a variable defining a categorization.						CO	3- R				
	(a) Fixed Factor	(b) Factor	(c) Lo	ocal (Conti	ol	(d) Error Control			trol		

7.	What do the letter "d" queueing model repres	CO4- R					
	(a) Service distribution	n	(b) System capacity				
	(c) Arrival distribution	1	(d) No.of. server				
8.	M/G/1 Queuing system	ment the statement	CO4- R				
	(a) Correct	(b) Wrong	(c) Partially Correct	(d) None of these			
9.	Find the expected nur	mber of customers in	the system, if $\lambda = 1/13$ and	CO5- R			
	$\mu = 1/4$ in (M/M/1);($\infty/2$	FCFS)					
	(a) 0.4444	(b) 0.777	(c) 1.4444	(d) 1.04			
10.	The service facilities a	are arranged in a seque	ence and the flow is always	CO5- R			
	in a single direction is called						
	(a) Series Queue	(b) Open Queue	(c) Closed Queue	(d) Parallel Queue			
	PART - B (5 x 2= 10 Marks)						
11.	A fair coin is tossed each experiment.	twice; find($X \le 1$) wh	ere X denotes number of h	eads in CO1- R			

- 12. Define Conditional distribution for two-dimensional discrete and continuous CO2- R random variable.
- 13. List out the three basic principles of experimental design.CO3- R
- 14. Write Little's formula for Queuing Theory.CO4- R
- 15. Define: Open Jackson Networks.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16. (a) (i) An electrical firm manufactures light bulbs that have the CO1- App (8) length of life which is normally distributed with mean of 800 hours and standard deviation of 40 hours. Find the probability that a bulb burns between 778 and 834 hours.

(ii) The density function of a continuous random variable X is CO1- App (8) given by

$$f(x) = \begin{cases} ax, \ 0 \le x \le 1 \\ a, \ 1 \le x \le 2 \\ 3(a-x), \ 2 \le x \le 3 \\ 0, \ otherwise \end{cases}$$

Find the value of 'a' and CDF of X

CO5- R

			U	/1			
	(b)	(i) Find the MGF	mean and varia	nce of Gamma d	istribution.	CO1- App	(12)
		(ii) A coin is tos Find the probabil	sed two times, if ity distribution of	X denotes the most X.	umber of heads.	CO1- App	(4)
17.	(a)	The joint probativariable (X,Y) is Find the correlated lines of regression	bility distribution given by f(x,y) ² tion coefficient. n.	on of two dime = $\frac{1}{3}(x+y)$, $0 \le x$ Also find the e	ensional random $\leq 1, 0 \leq y \leq 2$. Equations of two	CO2- App	(16)
			С)r			
	(b)	(i) Calculate the o x: 65 66 67 67 y: 67 68 65 68	correlation coeff 7 68 69 70 72 8 72 72 69 71	icient for the foll	lowing data	CO2- Ana	(8)
		(ii) If the joint PI Prove that X a	DF of (X, Y) is g and Y are uncorr	given by $f(x, y) =$ related.	e ^{-(x+y)} , x>0, y>0,	CO2- Ana	(8)
18.	(a)	(a) Analyze the following latin square experiment.				CO3- Ana	(16)
		A 105	B 95	C 125	D 115		
		C 115	D 125	A 105	B 105		

C 115	D 125	A 105	B 105		
D 115	C 95	B 105	A 115		
B 95	A 135	D 95	C 115		
Or					

(b) Analyze the variance in latin square of yields (in kgs) for paddy CO3- Ana (16) where P,Q,R,S denote the different methods of calltivation.

S 122	P 121	R 123	Q 122
Q 124	R 123	P 122	S 125
P 120	Q 119	S 120	R 121
R 122	S 123	Q 121	P 122

19. (a) There are three typists in an office. Each typist can type an CO4- App (16) average of 6 letters per hour. If letters arrive for being typed at the rate of 15 letters per hour. what fraction of time all the typists will be busy ? what is the average number of letters waiting to be typed?

3

Or

- (b) Patients arrive at a clinic according to Poisson distribution at a CO4- App (16) rate of 30 patients per hour. The waiting room dose not accommodate more than 14 patients.Examination time per patient is exponential with mean rate of 20 per hour.
 (i) Find the effective arrival rate at the clinic.
 (ii) What is the probability that an arriving patient will not wait.
 (iii) What is the expected waiting time until a patient is discharged from the clinic?
- 20. (a) Derive the Pollaczek- Khintchine formula for M/G/1 queue. CO5-U (16) Hence deduce the result for the queues M/D/1 and $M/E_k/1$ as special cases.

Or

(b) In a network of three service stations 1, 2, 3, customers arrive at CO5-U (16) 1, 2, 3 from outside, in accordance with the Poisson process having rates 5,10,15 respectively. The service times with the three stations are exponential with respective rates 10, 50, 100. The customer completing service at station 1 is equally like to go to station 2 or go to station 3 or leave the system. A Customer departing from service at station 2 always goes to station 2. A departure from service at station 3 is likely to go to the station 2 or leave the system. What is the average number of customer in the system? And what is the average time the customer spend in a system?