A		Reg. No. :											
		Question I	Paper (Cod	e: 5	100	4						
	B.F	E. / B.Tech. DEGRI	EE EXA	MIN	ATIO	ON, I	NOV	201	9				
		F	irst Seme	ester									
		Mecha	nical En	ginee	ering								
		15UCY104 - EN	GINEER	ING	CHE	EMIS	STRY	ľ					
		(Common to	Chemic	al Er	ngine	ering	g)						
		(Re	gulation	2015	5)								
Dur	ration: Three hours								Max	imun	n: 10	00 Ma	ırks
		Answe	er ALL (Quest	ions								
		PART A -	(10 x 1	= 10	Mar	ks)							
1.	Bond order is related to dissociation energy by which of the following?								CO	l - R			
	(a) Directly proportional			(b) Inversely proportional									
	(c) Constant		((d) no	one o	f the	se						
2.	Linear geometry is seen with which of the following									CO	l - F		
	(a) H_2S	(b) H ₂ O	((c) C	H_4					(d) C	$_2H_2$		
3.	Daniel cell is an ex	cample of										CO2	- R
	(a) primary cell		((b) se	cond	ary	cell						
	(c) Constant cell		((d) fu	el ce	11							
4.	Which of the following corrosion?	lowing does not p	oromote	the	diffe	renti	al ac	eratio	on			CO2	?- F
	(a) Accumulation (((b) Partially covering metals										
	(c) Wire fence kind of structures				(d) Accumulation of oxygen								
5.	If the cyclic integral of dQ/T is zero then the cycle is							CO3	3- F				

(d) reversible

(d) None of the above

CO3-R

(a) irreversible but (b) irreversible but (c) impossible

(b) Decrease

(c) Be zero

possible

The entropy of an isolated system can never _____

not possible

(a) Increase

7.	Wat	ter gas is						CO4- R	
	(a) ($CO + H_2O$	(b) CO	+ H ₂	(c) $CO_2 + N_2$	(d) C0	$O_2 + N_2O$		
8.	The raw material used for synthesizing petrol in Fischer- Tropsch process is							CO4-R	
	(a) l	kerosene		(b) Diesel	(c) coal		(d) LPG		
9.	Brass alloy containing mainly								
	(a) (Cu and Zn	(b) Cu a	nd Sn	(c) Zn and Pb	(d) Cu	and Fe		
10.	Which of the following is an example of ferrous alloy								
	(a) alnico (b) bronze			nze	(c) brass	((d) billon		
			P	ART - B (5 x	2= 10 Marks)				
11.	How do bonding and anti - bonding molecular orbitals differ with respect to energies the spatial distribution of electron-density?							CO1- R	
12.	. Suggest the most suitable methods for protecting the following metals from corrosion a) iron rod used in concrete b)bolt								
13.	. Write Gibb's-Helmholtz equation								
14.	What is a flue gas?							CO4- R	
15.	5. What are composites? Give the advantageous characteristics of composites.								
				PART – C (5	6 x 16= 80 Marks)				
16.	(a)	(i) Compare th N_2^+	e stability	and bond orde	er of CO ⁺ , CO, NO, N	NO ⁺ ,	CO1- App	(8)	
		(ii) Predict the Be in BeF ₂	hybridizat	ion of S in SF	F_6 , Xe in Xe F_4 , N in N	$1O_3$,	CO1- App	(8)	
	(b)	(i) Evaloin the	lattice anti	Or	Lucina Dom Habor a	volo	CO1 Ann	(9)	
						CO1 App			
		(II) WHAT IS PA	uii s excius	ion principie	Explain in detail.		CO1- App	(8)	
17.	(a) (i) What are the factors influencing the rate of corrosic (ii) What is paint? Give their constituents and fur					a with	CO2- U CO2- U	(8)	
		suitable examp		e then const	nuents and function	s willi	CO2- U	(8)	
		•		Or					
	(b)	(i) Calculate the			1		CO2- Ana	(8)	
		Pt/Br ₂ (g)(0.1 a (ii) Describe th		_	1 atm)/Pt at 298 K		CO2- Ana	(8)	
		(11) DOULTOU U		COULT PIOCODD	· · · · · · · · · · · · · · · · · · ·				

18.	(a)	(i) Derive the Gibbs-Helmholtz equation and mention its significance.	CO3- Ana	(8)
		(ii) State the phase rule. Explain the terms involved in it with suitable examples	CO3- Ana	(8)
		Or		
	(b)	(i) Derive an expression for the entropy change for an ideal gas.	CO3- U	(8)
		(ii) Gibbs free energy of a reaction at 300 K and 310 K are	CO3- U	(8)
		-29kcal and -29.5 kcal respectively. Determine its ΔH and ΔS at 300 K.		
19.	(a)	(i) Describe the manufacture of Petrol by Bergius process.	CO4- U	(8)
	()	(ii) Describe the manufacture of water gas with neat diagram.	CO4- U	(8)
		Or		. ,
	(b)	(i) How can you analyze flue gas by Orsat apparatus?	CO4- U	(8)
		(ii) Differentiate between NCV and GCV	CO4- U	(8)
20.	(a)	(i) What are non-ferrous alloys? Explain the compositions,	CO5- U	(8)
		properties and uses of any two alloys in detail.		
		(ii) Explain fibre reinforced composites	CO5- U	(8)
		Or		
	(b)	(i) State classification of composite and the need for composite.	CO5- U	(8)
		(ii) Categorize the different heat treatment of steels.	CO5- U	(8)