Reg. No. :					
Reg. No. :					
8					

Question Paper Code: 41002

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

First Semester

Civil Engineering

14UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions.

PART A -
$$(10 \times 1 = 10 \text{ Marks})$$

1.	If 1	and 2 are the eigen	values of 2x2 matrix	A. what are the eige	en values of A
	((a) 1 & 2	(b) 1 & 4	(c) 2 & 4	(d) 2 & 3
2.	$\begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 2 \end{vmatrix} =$			

- (a) 0 (b) 1 (c) 2 (d) 3
- 3. Examine the nature of the series $l+2+3+4+\ldots+n+\ldots$ (a) divergent (b) convergent (c) oscillatory (d) linear
- 4. The geometric series $1 + r + r^2 + r^3 + \dots + r^n + \dots$ converges if

 (a) $r \le 1$ (b) $r \ge 1$ (c) r > 1 (d) r < 1
- 5. What is the radius of curvature at (3, 4) on the curve $x^2 + y^2 = 25$?

 (a) 5 (b) -5 (c) 25 (d) -25

The envelope of the family of straight lines $y = mx + \frac{1}{m}$, m being the parameter is

(a) $v^2 = -4x$

(b) $x^2 = 4y$

(c) $v^2 = 4x$ (d) $x^2 = -4v$

Let u and v be functions of x, y and $u=e^{v}$. Then u and v are

(a) Functionally dependent

(b) Functionally independent

(c) Functionally linear

(d) Functionally non-linear

A stationary point of f(x, y) at which f(x, y) has neither a maximum nor a minimum is called

(a) Extreme point

(b) Max-Min point

(c) Saddle point

(d) Nothing can be said

9. $\iiint_{z=0}^{1/2} xyzdxdydz$

(a) 9

(b) $\frac{9}{4}$

(c) $\frac{9}{2}$

(d) $\frac{1}{9}$

10. By changing the order of integration, we get $\int_{0}^{1} \int_{0}^{y} f(x, y) dx dy =$

(a) $\iint_{0}^{1} f(x, y) dy dx$ (b) $\iint_{0}^{1} f(x, y) dy dx$ (c) $\iint_{0}^{1} f(x, y) dx dy$ (d) $\iint_{0}^{1} f(x, y) dy dx$

PART - B (5 x 2 = 10 Marks)

- 11. Verify Cayley-Hamilton theorem for the matrix $\begin{bmatrix} 5 & 3 \\ 1 & 3 \end{bmatrix}$.
- 12. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$ by D'Alembert's Ratio test.
- 13. Find the radius of curvature of the curve $y=e^x$ at x=0.
- 14. If $x = u^2 v^2$ and y = 2uv, find the Jacobian of x and y with respect to u and v.
- 15. Evaluate $\int_0^2 \int_0^{\pi} r \sin^2 \theta \, d\theta \, dr$.

PART - C (5 x 16 = 80 Marks)

16. (a) Diagonalize the matrix by orthogonal transformation
$$\begin{bmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{bmatrix}$$
. (16)

Or

- (b) Reduce the Q.F $x^2 + y^2 + z^2 2xy 2yz 2zx$ in to a canonical form by an orthogonal transformation. (16)
- 17. (a) (i) Show that the sum of the series $\frac{15}{16} + \frac{15}{16} \times \frac{21}{24} + \frac{15}{16} \times \frac{21}{24} \times \frac{27}{32} + \dots = \frac{47}{9}$. (8)
 - (ii) Show that the series $1 2 + 3 4 + ... \infty$ oscillates infinitely. (8)

Or

- (b) Prove that if b-1 > a > 0, the series $1 + \frac{a}{b} + \frac{a(a+1)}{b(b+1)} + \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \dots$ converges. (16)
- 18. (a) (i) Find the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$ (8)
 - (ii) Find the evolute of the parabola $y^2 = 4ax$.

Or

- (b) (i) Find the evolute of the curve $x = a(\cos t + t \sin t)$, $y = a(\sin t t \cos t)$. (8)
 - (ii) Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are connected by the relation $a^2 + b^2 = c^2$, c being a constant. (8)
- 19. (a) (i) Find the Taylor's series of $e^x log(1 + y)$ in powers of x and y up to third degree terms. (8)
 - (ii) Find the maximum value of $f(x, y) = \sin x \sin y \sin(x + y)$; $0 \le x, y < \pi$. (8)

Or

(8)

(b) (i) If $g(x, y) = \psi(u, v)$, where $u = x^2 - y^2$, v = 2xy, then prove that

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} \right). \tag{8}$$

(ii) Find the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 where $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$,

$$y_3 = \frac{x_1 x_2}{x_3} \,. \tag{8}$$

- 20. (a) (i) Change the order of integration and evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$. (8)
 - (ii) Evaluate $\iiint \frac{dx \, dy \, dz}{\sqrt{1 x^2 y^2 z^2}}$ for all positive values of x, y, z for which the

Or

- (b) (i) Evaluate $\iint_S z^3 dS$, where is S is the positive octant of the surface of the sphere. (8)
 - (ii) Evaluate $\iiint_V xyzdxdydz$, where V is the volume of space inside the tetrahedron

bounded by the planes
$$x = 0$$
, $y = 0$, $z = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (8)