| Reg. No. :                                 |   |
|--------------------------------------------|---|
| Question Paper Code: 34022                 |   |
| B.E. / B.Tech. DEGREE EXAMINATION, NOV 201 | 9 |
| Fourth Semester                            |   |
| Civil Engineering                          |   |
| 01UMA422 - NUMERICAL METHODS               |   |
| (Common to EEE, EIE and ICE)               |   |

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. When is the convergence of an iterative method for solving the equation f(x) = 0 said to be (i) linear (ii) quadratic.
- 2. State the condition of convergence of Newton-Rapson method.
- 3. Give two indirect methods to solve a system of linear equations.
- 4. What do you mean by 'diagonally dominant'?
- 5. Define interpolation.
- 6. State Lagrange's interpolation formula.
- 7. State trapezoidal rule to evaluate  $\int_{x_0}^{x_n} f(x) dx$ .
- 8. Using Trapezoidal rule, evaluate  $\int_0^{\pi} sinx \, dx$  by dividing the range into 6 equal parts.
- 9. Write the normal equations for fitting a straight line by the method of least squares.
- 10. State the principle of least squares.

- 11. (a) (i) Find the positive real root of 3x cosx 1 = 0 using Newton-Rapshon method. (8)
  - (ii) Solve the equation  $x^3 + x^2 1 = 0$  for the positive root by iteration method. (8)

## Or

- (b) (i) Using the secant method find a real root of the equation  $f(x) = xe^x - 1 = 0.$  (8)
  - (ii) Find the real positive root of 3x cosx 1 = 0 by Newton Raphson method correct to 6 decimal places. (8)
- 12. (a) Solve the following system of equation using Gaussian elimination method. 28x + 4y - z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35. (16)

## Or

(b) (i) Solve the following system of equations by Gauss Seidel iteration method. 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25 (8)

(ii) Using Jacobi method, find the eigen values and eigen vectors of  $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$ . (8)

13. (a) Using Newton's backward formula find f(7.5) from the following table: (16)

|   | X            | 1 | 2 | 3  | 4  | 5   | 6   | 7   | 8   |
|---|--------------|---|---|----|----|-----|-----|-----|-----|
| f | ( <i>x</i> ) | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 |

Or

- (b) (i) Using Newton's divided difference formula, find u(3) given u(1)=-26, u(2)=12, u(4)=256, u(6)=844. (8)
  - (ii) Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the following data and hence find y(5). (8)

| х | 4 | 6 | 8 | 10 |
|---|---|---|---|----|
| у | 1 | 3 | 8 | 10 |

14. (a) (i) Find the first two derivatives of  $y = (x)^{1/3}$  at x = 50 & x = 56 given the table below.

| x : | 50     | 51     | 52     | 53     | 54     | 55     | 56     |
|-----|--------|--------|--------|--------|--------|--------|--------|
| y : | 3.6840 | 3.7084 | 3.7325 | 3.7563 | 3.7798 | 3.8030 | 3.8259 |

(ii) Evaluate 
$$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \sin(x+y) dx dy$$
 by using Trapezoidal rule and Simpson's rule.  
(8)

## Or

(b) (i) Compute first and second derivative of f(3) for the following data using difference table (8)

| X                     | 3.0 | 3.2     | 3.4    | 3.6    | 3.8    | 4.0 |
|-----------------------|-----|---------|--------|--------|--------|-----|
| <i>f</i> ( <b>x</b> ) | -14 | -10.032 | -5.296 | -0.256 | -6.672 | 14  |

(ii) Evaluate 
$$\int_{0}^{1} \int_{1}^{2} \frac{2xy}{(1+x^2)(1+y^2)} dxdy \text{ using Trapezoidal rule with } h=k=0.25.$$
(8)

15. (a) (i) Find the equation of the best fitting straight line to the following data by method of group averages: (8)

| X | 0  | 5  | 10 | 15 | 20 | 25 | 30 |
|---|----|----|----|----|----|----|----|
| у | 10 | 14 | 19 | 25 | 31 | 36 | 39 |

(ii) Fit a curve of the form  $y = ae^{-bx}$  for the following data by the method of moments.

(8)

(8)

| X | 0  | 2  | 4  | 6  | 8  | 10 |
|---|----|----|----|----|----|----|
| у | 65 | 58 | 52 | 47 | 42 | 37 |

Or

(b) (i) Find a straight line fit of the form y = a + bx, by the method of group averages for the following data: (8)

| x | 0  | 5  | 10 | 15 | 20 | 25 |
|---|----|----|----|----|----|----|
| y | 12 | 15 | 17 | 22 | 24 | 30 |

(ii) By the method of moments, fit a straight line to the data.

| Х | 1   | 2   | 3   | 4   |
|---|-----|-----|-----|-----|
| Y | 1.7 | 1.8 | 2.3 | 3.2 |

(8)