Question Paper Code: 33021

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL Branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. State the Dirichlet's conditions for the existence of a Fourier series.
- 2. State the conditions for f(x) to have Fourier series expansion.
- 3. Find Fourier Sine Transform of $\frac{1}{x}$.
- 4. Define Fourier Integral theorem.
- 5. Find the Z-transform of a^n .
- 6. Find $Z[\frac{1}{n(n+1)}]$.
- 7. State initial and final value theorems on z transform.
- 8. Write the appropriate solution of the one dimensional heat flow equation.
- 9. Write down the implicit formula to solve one dimensional heat flow equation.
- 10. State Liebmann's iteration process formula.

PART - B (5 x 16 = 80 Marks)

11. (a) Expand the function $f(x) = \sin x, 0 < x < \pi$ in a Fourier cosine series. (16)

Or

(b) (i) Find the Half range cosine series for y = x in (0, l) and hence show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty .$ (8)

(ii) Compute the first two harmonics of the Fourier series of f(x) given by (8)

Х	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	0.8	0.6	0.4	0.7	0.9	1.1	0.8

12. (a) (i) Find the Fourier cosine transform of e^{-4x} and hence find the values of $\int_0^\infty \frac{\cos 2x}{x^2+16} dx$ and $\int_0^\infty \frac{x \sin 2x}{x^2+16} dx$ (8)

(ii) Find the Fourier cosine transform of $f(x) = \begin{cases} \sin x & 0 < x < \pi \\ 0 & \pi < x < \infty \end{cases}$ (8)

Or

(b) (i) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| &: |x| < 1 \\ 0 &: otherwise \end{cases}$ and hence find the value of $\int_0^\infty \frac{\sin^4 t}{t^4} dt$ (8)

(ii) Find the Fourier cosine transform of e^{-x^2} and hence find the Fourier sine transform of $x e^{-x^2}$. (8)

13. (a) (i) Using Convolution theorem, evaluate
$$Z^{-1}\left[\frac{9z^3}{(3z-1)^2(z-2)}\right]$$
 (8)

(ii) Using Z-transform solve the equation

$$u_{n+2} - 5u_{n+1} + 6u_n = 4^n$$
, $u(0) = 0$ and $u(1) = 1$. (8)

Or

(b) (i) State and prove initial and final value theorem on Z- transform. (8) (ii) Find $Z^{-1}\left[\frac{z(z^2-z+2)}{(z+1)(z-1)^2}\right]$ by using method of Partial fraction. (8)

33021

14. (a) A tightly stretched string of length l with fixed ends is initially in its equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3\left(\pi \frac{x}{l}\right)$. Find the displacement y(x, t). (16)

Or

- (b) A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite length. If the temperature at short edge y = 0 is given by $u = \begin{cases} 20 x & : 0 \le x \le 5 \\ 20(10 x) : 5 \le x \le 10 \end{cases}$ and all the other three edges are kept at 0°C. Find the steady state temperature at any point of the plate. (16)
- 15. (a) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x=0, y=0, x=3, y=3 with u=0 on the boundary and mesh length 1 unit. (16)

Or

- (b) (i) Solve, by Crank-Nicholson method, the equation $u_{xx} = u_t$ subject to u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t for two time steps by taking h = 0.25. (8)
 - (ii) Evaluate the pivotal values of the following equation taking h = 1 and up to one half of the period of the oscillation $16u_{xx} = u_{tt}$ givenu(0, t) = 0, u(5, t) = 0, $u(x, 0) = x^2(5 - x)$ and $u_t(x, 0) = 0$. (8)

##