Question Paper Code: 51002

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

First Semester

Civil Engineering

01UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. State Cayley Hamilton theorem and its uses.
- 2. Prove that, if A is orthogonal then A^T and A^{-1} are orthogonal.
- 3. Find the center and radius of the sphere $3(x^2+y^2+z^2)-2x-3y-4z-22=0$.
- 4. Define the right circular cylinder.
- 5. Find the curvature of the curve $2x^2+2y^2+5x-2y+1=0$.
- 6. Find the radius of curvature for $y = e^x$ at the point where it cuts the Y- axis (or) at x=0.
- 7. If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, then find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$.
- 8. If $x = r\cos\theta$ and $y = r\sin\theta$, then find $\frac{\partial(r,\theta)}{\partial(x,y)}$.
- 9. Evaluate $\int_0^1 \int_0^{x^2} (x^2 + y^2) dy dx$.
- 10. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xy^{2} z \, dz dy dx$.

PART - B ($5 \times 16 = 80 \text{ Marks}$)

11. (a) (i) Find the Eigen values and Eigenvectors of the matrix $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}.$ (8)

(ii) Verify Cayley-Hamilton theorem find
$$A^4$$
 and A^{-1} when $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. (8)

Or

- (b) Reduce the quadratic form $2x^2 + y^2 + z^2 + 2xy 2xz 4yz$ to canonical form by orthogonal reduction. Also find the nature of the quadratic form. (16)
- 12. (a) (i) Find the center, radius and area of the circle $x^2+y^2+z^2-2x-4y-6z-2=0$, x+2y+2z=20. (8)

(ii) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$ 2x+3y+4z=8; is a great circle. (8)

Or

(b) (i) Find the equation of the right circular cylinder of radius 2 whose axis is the $\lim_{x \to 1} \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}.$ (8)

(ii) Find the equation of the right circular cylinder whose axis is the line x = 2y = -z and radius 4. (8)

13. (a) (i) Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (8)

(ii) Find the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$. (8)

Or

(b) (i) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters 'a' and 'b' are connected by the relation a+b = c. (8) (ii) Find the envelope of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, considering it as the envelope of normals. (8)

14. (a) If
$$u = 2xy$$
, $\vartheta = x^2 - y^2$ where if $x = r \cos \theta$, $y = r\sin \theta$ find $\frac{\partial (u, \vartheta)}{\partial (r, \theta)}$. (16)
Or

(b) (i) Examine $f(x, y) = x^3 + y^3 - 12x - 3y + 20$ for its extreme values. (8) (ii) Find the dimensions of the rectangular box without a top of maximum capacity,

whose surface is $108 \ sq.cm.$ (8)

15. (a) Change the order of the integration and hence evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dx dy$. (16)

Or

- (b) (i) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx \, dy$ by changing into polar coordinates. (8)
 - (ii) Find the volume of the tetrahedron bounded by the planes x=0, y=0, z=0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$ (8)