4		7
۱	l	,

Reg. No.:					

Question Paper Code: 57101

B.E./B.Tech. DEGREE EXAMINATION, NOV 2019

Seventh Semester

Civil Engineering

15UCE701 -DESIGN OF REINFORCED CONCRETE AND BRICK

MASONRY STRUCTURES

(Regulation 2015)

(IS 456:2000, IS 1905 - 1987, IS 3370 : Part-II and Part-IV are permitted)

Dura	ation: Three hours			Maximum: 100 Marks		
		Answer ALL	Questions			
PART A - $(5 \times 1 = 5 \text{ Marks})$						
1.	Rankine's theory of la	CO1- R				
	(a) Resal and Bell	(b) Mohr	(c) Terzaghi	(d) All the above		
2.	Dome in water tank is	provided to achieve		CO2- R		
	(a) Maximum strength	1	(b) Maximum storage			
	(c) Minimum storage		(d) Minimum hoop stress			
3.	The decorative cap to	the top of a newel pos	t is called:	CO3- R		
	(a) Finials	(b) Fillet	(c) Easing	(d) Apron		
4.	Ina simply supported	CO4- R				
	(a) $1/4^{th}$ of the span	(b) $1/5^{th}$ of the span	(c) $1/6^{th}$ of the span	(d)1/7 th of the span		
5.	The minimum thickne	ne minimum thickness of the flat slab is taken as CO5- R				
	(a)L/32 for end panels	s without drops	(b) L/36 for end panels without drops			

(d) All the above

(c) L/36 for interior panels without drops

PART - B (5 x 3 = 15 Marks)

6. Name the different types of retaining walls. CO1- R

7. List the factors for designing a water tank.

8. What are the components of flat slab?

9. State the principle of virtual work.

10. What is meant by lateral support?

 $PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Design a reinforced concrete cantilever type retaining wall, CO1- App (16) having a 5m full stem. The wall retains the soil with its top. The soil weighs 18000N/m³, and has an angle of repose 30°. The SBC of soil is 200KN/m². Use M20 grade concrete and Fe 415 Steel.

Or

(b) Design a counter fort retaining wall for the following data. CO1- App (16)

Height of the wall above the ground level = 6m

SBC of the soil = $160KN/m^2$.

Angle of friction $= 33^{\circ}$.

Density of the soil = $16KN/m^3$.

Spacing of the counter fort = 3m c/c

Use M20 grade concrete and Fe 415 Steel.

12. (a) Design a underground water tank of internal dimension CO2-E (16) 6mx3mx3m. The soil surrounding the tank always remains dry.

The tank shall be provided with a roof slab. The soil weighs 16000 N/m², having an angle of repose 30⁰. Use M20 grade concrete and Fe 415 Steel.

Or

(b) A reinforced concrete dome of 6m base diameter with a rise of CO2-E 1.25m is to be designed for a water tank. The uniformly distributed live load including finishes on dome may be taken as 2KN/m². Adopt M20 concrete and grade one steel. Design the dome and the ring beam, permissible tensile stress in steel is 100N/mm²

CO5-R

13. (a) Design a interior panel of flat slab with drops for an office floor CO3-U (16)to suit the following data. Size of floor = $20m \times 20m$ Size of panel = $5m \times 5m$ Loading class = 4 KN/m^2 Grade of concrete = M 20Grade of steel = Fe 415Or (b) Explain the step by step procedure for reinforced concrete walls. CO3-U (16)(a) Design a rectangular slab 5mx4m in size and simply supported at CO4- Ana 14. (16)the edges to support a service live load of 4KN/m². Assume coefficient of orthotrophy as 0.7 Use M20 grade concrete and Fe 415 Steel. Or (b) Design a reinforced circular slab for the following data. CO4- Ana (16)Diameter of the slab = 5.5 mService load = $4KN/m^2$. Floor finish load = $1KN/m^2$. The slab is simply supported along the edge. Use M20 grade concrete and Fe 415 Steel. 15. (a) Design a interior cross wall with axially loaded and on stiffened CO5-E (16)solid wall constructed in a two storied building to carry 100mm thick RCC slabs with 3m ceiling height. It support a 2.65 m wide slab with live load on roof = $1.5KN/m^2$. Live load on floor = 2KN/m², weight of 80mm thick terrace = 1.96KN/m², weight of floor finish = $0.8KN/m^2$. Or (b) Design an interior wall of two storied building load due to CO5-E (16)unequal short spans of roof / floor of 4m and 3m, on either side of the wall. The height of each storey is3m, assume the intensity of loading as i) from roof = 6KN/m² and ii) from floor =

 $4KN/m^2$.