T 3.7					
Reg. No. :					
11Ug. 11U					
O					

(d) antiparallel but of unequal magnitude

Question Paper Code: 42003

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019.

Second Semester

Civil Engineering

14UPH203 - MATERIALS SCIENCE

(Common to Mechanical Engineering)

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions.

		PART A -	$(10 \times 1 = 10 \text{ Marks})$	
1.	In the case of	, the valence	band and the conduction	band overlap each other
	(a) conductors	(b) dielectrics	(c) insulators	(d) semiconductors
2.	The valence electrons a	are	the nucleus and they are _	bound.
	(a) ionic	(b) covalent	(c) hydrogen	(d) metallic
3.	The pure Si and Ge Ser	niconducting ma	aterials have	_ bonds.
	(a) intrinsic semico(c) n-type semicon		(b) compound semi(d) p-type semicor	
4.	Semiconductors have _	temper	rature coefficient	
	(a) positive	(b) negative	(c) neutral	(d) infinite
5.	In the case of paramagare aligned	gnetic materials	the spin magnetic mome	ents of the adjutant atoms
	(a) parallel to each	other	(b) antiparallel to e	ach other

(c) randomly

ο.	The superconducting state is perfectly	in nature.					
	(a) Diamagnetic (b) heat capacity	(c) isotopic effect	(d) entropy				
7.	occurs when a dielectric contains occluded gas bubbles.						
	(a) thermal breakdown	(b) defect breakdow	n				
	(c) intrinsic breakdown	(d) discharge breakd	(d) discharge breakdown				
8.	Polarization occur in Ferrites	s and semiconductors.					
	(a) Electronic (b) Ionic	(c) Orientation	(d) Space charge				
9.	Which of the following technique is used	to form metallic glasses	?				
	(a) Slow cooling (b) Quenching	(c) Melt spinnin	g (d) Hardening				
10.	Milling, Lithographic method and machin	ing are examples of					
	(a) bottom-up approach	(b) sputtering techn	ique				
	(c) plasma assisted technique	(d) top-down approa	ach				
	PART - B (5	x 2 = 10 Marks)					
11.	List the postulates of free electron theory.						
12.	Compare intrinsic and extrinsic semicond	uctor.					
13.	List the properties of a Ferromagnetic man	terial.					
14.	Define dielectric constant.						
15.	Give any four applications of nanomateria	al.					
	PART - C (5 :	x 16 = 80 Marks)					
16.	(a) Derive an expression for the electric	·	ctivity and hence deduce				
	Wiedemann- Franz law.		(16)				
		Or					
	(b) Define density of states and derive a	an expression for carrier	concentration in metals. (16)				
17.	(a) Derive an expression for carrier condiscuss the variation of fermi level an	•	-				

	(b)) (i) What is Hall effect? Derive an expression for Hall coefficient? Describe					
		arrangement for the measurement of Hall coefficient.	(12)				
		(ii) Write the applications of Hall effect.	(4)				
18.	(a)	What are Ferrites? Classify Ferrites based on their structures.	(16)				
		Or					
	(b)	(i) Classify the types of superconductors based on magnetization.	(8)				
		(ii) Discuss in detail the phenomena of superconductivity based on BCS theory.	(8)				
19.	(a)	Interpret the different types of Polarization mechanism in dielectrics.	(16)				
		Or					
	(b)	What is internal field? Derive an expression for internal field and hence dedu Clasius-Mosotti equation.	ce the (16)				
20.	(a)	Discuss how to improve the mechanical proportion of engineering materials. Differentiate Creep and Fatigue Or	(16)				
	(b)	Illustrate in detail the Sol-gel method to prepare nano material.	(16)				