C		Reg. No. :												
		Question Pa	per	Coc	le: :	551	03]						
B.E./B.Tech. DEGREE EXAMINATION, NOV 2019														
		Fifth S	Seme	ster										
Civil Engineering														
15UCE503- DESIGN OF REINFORCED CONCRETE ELEMENTS														
(IS456-2000 and SP16 Permitted)														
(Regulation 2015)														
Dura	ation: Three hours	A new on A I		nost	0.00			l	Maxi	mun	n: 10	0 M	arks	
Answer ALL Questions														
		PART A - (5	x = 5 Marks											
1.	As per limit state method, Minimum percent of reinforcement in a RC slab in either direction is											CO	1- R	
	(a) 0.18	(b) 0.16	(c) 0.1	14				((d) 0	.12			
2.	A R.C.C. beam not provided with shear reinforcement may develop CO2- R cracks in its bottom inclined roughly to the horizontal at												2- R	
	(a) 25°	(b) 35°	()	c) 45	0				((d) 5	5°			
3.	The minimum diameter of the longitudinal bars in an RCC column CO3- R should not be less than													
	(a) 12mm	1 (b) 16mm (c) 20mm (d)								(d) 2	5mm			
4.	footing is used in load bearing masonry construction.											CO	4- R	
	(a) Strip	(b) Isolated	(c) Co	ombi	ned			((d) P	ile			
5.	The minimum width of	a bui	ouilding is								CO	5- R		
	(a) 150mm&250mm (b) 250mm&150mm (c) 350mm & 1.8m									m (d) 200mm&2m				
		PART – B (5	x 3=	= 15N	/lark	s)								
6.	Write the merits of lim	it state method.										CO	1- R	
7.	Define shear and torsional reinforcement.									CO	2- R			
8.	Differentiate between short and long column								CO3- R					

Г

- 9. State the reason for providing combined footing.
- 10. Enlist the types of staircases

PART – C (5 x 16= 80 Marks)

11. (a) A rectangular beam is to be simply supported on supports of CO1- App (16) 230mm width. The clear span of the beam is 6m. The beam is to have a width of 300mm, the characteristic superimposed load is 12kN/m. Design the beam and sketch the reinforcement details.

Or

- (b) Design a slab for an office floor of size 5mX 6m carrying a load CO1- App (16) of 6 kN/m². The slab is located at the centre (interior panel) and it is supported by a brick masonry wall of 230mm. Use M25 and Fe415. Draw the reinforcement detailing.
- 12. (a) A beam of rectangular section 300mm width and 500mm CO2- App (16) effective depth, is subjected to factored moment of 180kN-m, factored shear force of 30kN and factored twisting moment of 15kN-m. Determine the area of reinforcement to resist the above forces. Use M20 grade concrete and Fe415 grade steel

Or

- (b) A tee beam slab floor of an office comprises of a slab of 150mm CO2- App (16) thick spanning between ribs spaced at 3m centres. The effective span of the beam is 8m. Live load on floor is 4 kN/m². Use M20 grade of concrete and Fe415 grade of Steel. Design one of the intermediate tee beams.
- 13. (a) Design the reinforcements in the slender column which is CO3- Ana (16) restrained against sway using the following data size of Column 450 X450mm, Effective length about major and minor $axis = l_{ex} = l_{ey} = 6m$, unsupported length=7m,Factored load=1500kN, Factored moment about major and minor axes are $M_{ux} = M_{uy} = 40$ kNm at top and 20kNm at bottom. Use M30 and Fe415.

Or

(b) Design the reinforcement in a circular column of diameter CO3- Ana (16) 350mm with lateral reinforcement of 8mm diameter to support a factored load of 1400 kN. The column has an unsupported length of 3.5m and is braced against side sway. Adopt M20 grade concrete and Fe415 steel bars.

CO4- R

14. (a) Write the step by step by design procedure for combined footing. CO4- U (16)

Or

- (b) A footing has to transfer a dead load of 1000 kN and imposed CO4-U (16) load of 400 kN from a square column 400 x 400 mm. Safe bearing capacity is 180 kN /m². Design an appropriate footing for the column. Use M30 concrete and Fe 415 steel.
- 15. (a) Design one of the flight of a dog legged stairs spanning between CO5- App (16) landing beams using the following data. Number of steps in flight = 10 Tread (T) = 300 mm Rise (R) = 150 mm Live load = $5kN/m^2$ Width of landing beam 300 mm Take $f_{ck} = 20 N/mm^2$ and $f_y = 415 N/mm^2$.

Or

(b) Write the step by step by design procedure for open newel CO5- App (16) staircase.