Reg. No. :					

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019

Third Semester

Chemical Engineering

15UCH303 - FLUID MECHANICS FOR CHEMICAL ENGINEERING

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. A small shear force is applied on an element and then removed. If the element CO1- R regains it's original position, what kind of an element can it be?

	(a) Solid	(b) Liquid	(c)Fluid	(d) Gaseous	
2.	Which of the followin	g is a shear-thinning fl	uid	CO1- R	
	(a) Bingham plastic	(b) Rheopectic	(c) Dilatant	(d)Pseudoplastic	
3.	Which of the followin fluid at any point?	ng cannot be the value	e of absolute pressure of a	CO2- R	
	(a) 1.013 bar	(b) 0	(c) -1 bar	(d) 200 bar	
4.	Navier- Stokes equation	on describes the motion	n of	CO2- R	
	(a) Solid substance	(b) Non-viscous fluid	(c) Viscous fluid	(d) Gas	
5.	The fundamental dimensional quantities are related by			CO3- R	
	(a) Avagadaro's law		(b) Newton's second law		
	(c) Newton's first law		(d) Newton's third law		
6.	Similitude is a concept applicable to the testing of CO3-				
	(a) Mathematical models		(b) Physical model		
	(c) Chemical models		(d) Engineering models		

7.	Fluid flow at increasing rate through a diverging pipe is an example offlow. C							
	(a) Steady non - uniform	(b) Non steady non uniform	n					
	(c) Steady uniform	(d) Non steady uniform						
8.	Which of the factors primarily decide whether the flow in a circular pipe is laminar or turbulent?							
	(a) The Reynolds Number	(b) The Prandtl N	lumber					
	(c) The Pressure gradient along the length of the pipe (d) All of the above							
9.	In venturi meter, the converging cone angle	is of the order ofdegree.		CO5- R				
	(a) 5-7 (b) 7-10	(c) 15-20	(d) 20-25					
10.	The need for priming is eliminated by provide	ling		CO5- R				
	(a) Negative suction head	(b) Positive suction head						
	(c) Positive discharge head	(d) Negative discharge head	d					
	PART – B (5 x 2= 10 Marks)							
11.	What is meant by continuum?			CO1- R				
12.	State Bernoulli's theorem.			CO2- R				
13.	^{3.} Define Dimensional Homogeneity.							
14.	^{4.} Define Drag Force and Drag coefficient.							
15.	• What is meant by blind flange?							
	PART – C (5	x 16= 80 Marks)						
16.	(a) (i) Explain briefly about the types of flu	uid flow.	CO1- U	(8)				
	(ii) A liquid with kinematic viscos specific weight 8000N/m ³ fills the stationary plate and parallel plate of 2mm apart. If a parallel plate is to b 3m/sec. Determine the force and powe speed.	ity of 4 centistokes and space between a large 550mm ² , which are kept be pulled with uniform of er required to maintain the	CO1- App	(8)				
	Or							

(b) Explain in detail about the classification of fluid types of fluid CO1 App (16) motion.

17.	(a)	(i) Explain briefly about the fluid friction.	CO2- U	(8)
		(ii) Explain the effect of roughness.	CO2- U	(8)
		Or		
	(b)	Derive Navier-stokes equations.	CO2- U	(16)
18.	(a)	The pressure difference ΔP in a pipe of diameter D and length 1 due to viscous flow depends on the velocity v, viscosity μ and density ρ . using Buckingham's pi-theorem obtain an expression for ΔP .	CO3- Ana	(16)
		Or		
	(b)	(i) Explain similitude and types of similarities.	CO3- Ana	(8)
		(ii) Pipe of diameter 1.8m is required to transport an oil of specific gravity 0.8 and viscosity 0.04 poise at the rate of $4m^3/s$. Tests were conducted on a 20cm diameter pipe using water at 20°C. Find the velocity and rate of flow in model, viscosity of water at 20°C is 0.01 poise.	CO3- Ana	(8)
19.	(a)	Find the diameter of a particle of specific gravity 2.65 which will have a terminal velocity of 0.5 m/s in water. Take $\mu_w = 10^{-3}$ kg m/s. Assume $N_{Re,P} = 100$. Find the diameter of a particle of specific gravity 2.65 which will have a terminal velocity of 0.5 m/s in water. Take $\mu_w = 10^{-3}$ kg m/s. Assume $N_{Re,P} = 100$.	CO4- U	(16)
		Of		
	(b)	(i) Explain briefly about the Fluidization and their advantages	CO4- U	(8)
		(ii) Derive the terminal settling velocity of spherical particle in a fluid medium.	CO4- U	(8)
20.	(a)	Explain with neat sketch about the working of Reciprocating pump with its discharge curves.	CO5 U	(16)
	(b)	(i) An oil of specific gravity 0.9 is flowing through a venturimeter having inlet diameter 20cm and throat diameter 10cm. The oil- mercury differential manometer shows a reading of 20cm. Calculate the discharge of oil through the horizontal venturimeter .Take Cd=0.98.	CO5- U	(8)
		(ii) Differentiate Variable head meters and Variable area meters.	CO5- U	(8)