A		Reg.	No. :											
Question Paper Code: 57901														
B.E./B.Tech. DEGREE EXAMINATION, NOV 2019														
	Seventh Semester													
Chemical Engineering														
15UCH701 - TRANSPORT PHENOMENA														
			(Regul	latior	1 201	5)								
Duration: Three hours					Maximum: 100 Marks									
	Answer ALL Questions													
		PAR	ГА-(1)	0 x 1	= 1() Mai	rks)							
1.	At the interface betwe	een gas and li	quid, sh	lear s	stress	for a	a Ne	wton	ian f	fluid	is		C	:01- R
	(a) 0 (b) $\frac{\mu du}{dy}$ (c)						(c) Infinity (d) Finite and negative							
2.	Viscosity of gas depends on												C	01 - R
	(a) T	(b) $T^{1/2}$		(c) T ²						(d) T	-3/2		
3.	The fluid property, du	The fluid property, due to which, mercury does not wet the glass is CO2- R									02- R			
	(a) Adhesion	(b) Cohesic	on	(c) vis	scosi	ty				(d) S	urfa	ce te	nsion
4.	The velocity profile for turbulent flow through a closed conduit is CO2- R									02- R				
	(a) Linear	(b) Parabol	ic	(c) Lo	garit	thmi	c			(d) H	Iype	rboli	c
5.	At constant tempe	rature, the	therma	al c	ondu	ictivi	ties	of	gas	ses			C	03- R
	with rise in pressure.													
	(a) Increase depends on pressure					(b) Increase								
	(c) Decrease					(d) Remains same								
6.	Prandtl number for most of dry gases is abou				ut CO3						03- R			
	(a) 150	(b) 0.72		(c) 70						(d) 0	.001		
7.	Mass transfer rate between two fluid phases does not necessarily						C	04- R						
	depend on the of the two phases.													
	(a) Physical Properties					(b) Chemical Properties								
	(c) Interfacial Area					(d) Degree of Turbulence								

8.	At 750°K and 1 atm, the approximate value of Schmidt number for air is							
	(a)	1	(b) 0.1	(c) 0.01	(d) 10			
9.	Colburn analogy is applicable for the value of Prandtl number from CO5- R							
	(a) ((a) 0.5 to 5 (b) 0.6 to 120 (c) 120 to 400 (d) 0.001 to						
10.	jH f	jH factor for heat transfer depends upon the number.						
	(a) l	Prandtl	(b) Nusselt	(c) Reynolds	(d) Biot			
$PART - B (5 \times 2 = 10 \text{ Marks})$								
11.	For the incompressible flow the x and y components of the velocity vector are CO1- App $V_x = 2 (x + y); V_y = 2 (y + z)$ where x, y and z are in meters and the velocity are in m/s. Then show the z component of the velocity vector (V_z) of the flow for the boundary condition $V_z = 0$ at Z=0 is							
12.	The distance between plates is $\Delta y = 0.5$ cm, $\Delta V_z = 10$ cm/sec, and the fluid is CO2-U ethyl alcohol at 273K having a viscosity of 1.77cp. Estimate the shear stress τ_{yz} and the velocity gradient or shear rate.							
13.	A plastic panel of area $A=929$ cm ² and the thickness $Y=0.64$ cm was found to CO3- App conduct heat at a rate of 3.0 Watts at steady state with temperatures of $T_0=24^{\circ}$ C and $T_1=26^{\circ}$ C on the two main surfaces. Estimate the thermal conductivity of the plastic at 25° C							
14.	Sketch the concentration profile when a component diffuses through a stagnant CO4- U medium.							
15.	State Von Karman similarity hypothesis? CO5- R							
			PART - C (2)	5 x 16= 80 Marks)				
16.	(a)	Estimate the visc	cosity of N_2 at 50 [°] c and	l 854atm, given M=28gm/gn	n CO1- App (16)			
		mole P _c =33.5atm, Tc=126.2K						
Or								
	(b)	Discuss in detail at low density.	about the molecular th	neory of viscosity of the gase	s CO1- App (16)			
17.	(a)	Calculate the rec horse power to t	uired torque in N-m a turn the shaft in the fr	nd the power consumption i it is it	n CO2- Ana (16) f			

bearing surface on the shaft is 5.08 cm, that the shaft is turning at 200 rpm, that the viscosity of the lubricant is 200 cp, and that the fluid density is 243.8 kg/m^3 . Inner radius= 2.54×10^{-2} m, outer radius is 0.02545m.

2

- (b) Derive the differential equations of motion for a fluid of constant CO2 Ana (16) viscosity and density which is flowing over an impulsively accelerated, infinitely long horizontal flat plate. Assume that the flow is laminar.
- 18. (a) Derive the temperature distribution equation for fin and find the CO3- App (16) effectiveness of fin.

Or

- (b) A frying pan has a handle with a rectangular cross section that is CO3- App (16) 3 mm thick and 3 cm wide. The point where the handle is attached to the pan has a temperature of 200°C. The desired temperature of the other side of the handle is 30°C. How long should the handle be if there is a convection coefficient of 18 3 W/m².°C to an ambient temperature of 20°C and the handle is (a) duralumin $(k = 180 \text{ W/m} \cdot ^{\circ}\text{C})$ or stainless steel $(k = 53 \text{ W/m} \cdot ^{\circ}\text{C})$.
- 19. (a) Carbon dioxide from an aqueous solution has to be removed by an CO4- App (16) air stream flowing at 3.0 ft/sec using 3 in. internal diameter wetted wall column. At one point in the column the CO₂ concentration in air stream is 1 mole percent and in the water is 0.5 mole percent. If the column is operated at 10 atm and 80°F, find the gas-phase mass transfer coefficient and the mass flux at that point in the column.

Or

- (b) At the bottom of a cylindrical container is n-butanol. Pure air CO4- App (16) is passed over the open top of the container. The pressure is 1 atm and the temperature is 70°F. The diffusivity of air-n-butanol is $8.57 \times 10^{-6} \text{ m}^2/\text{sec}$ at the given conditions. If the surface of n-butanol is 6.0 ft below the top of the container, calculate the diffusion rate of n-butanol.
- 20. (a) Use the diffusional analog of Equation for turbulent flow in circular CO5- App (16) tubes, and the Blasius formula for the friction factor, to obtain the following expression for the Sherwood number, Sh = 0.0160 Re7/8 Sc1/3 (valid for large Schmidt numbers.1)

Or

(b) Relate the analogies between Momentum Heat and Mass Transport. CO5- App (16)