			r							
		Reg. No. :								
				~ -						
		Question P	aper	Code	: 52909	A				
		B.E. / B.Tech. DEGI	REE EZ	XAMIN	NATION,	NOV	2019			
		Second	l Seme	ster						
		Chemical	Engin	eering						
		15UCH209 - PRINCI	PLES	OF ME	ECHANIC	S				
		(Regula	ation 20	015)						
Dur	ation: Three hours					М	aximuı	n: 100) Mai	rks
		Answer A	LL Qu	estions	,					
		PART A - (10) x 1 =	10 Mai	rks)					
1.	Due to rusting the w	veight of iron							CO	1-]
	(a) decreases	(b) increases	(c)	remain	ns the sam	ie	(d) 1	uncert	tain	
2.	Steel containing upto 0.15 % carbon, is known as							CO	1-]	
	(a) Mild steel.		(b)	Dead	mild steel	•				
	(c) Medium carbon steel.			(d) High carbon steel.						
3.	is a vect	s zero.						CO	D2	
	(a) Unit vector	(b) Null vector	(c)	Slidin	g vector	(d) Posi	tion v	vector	•
4.	Which one not a vector quantity								CO	2-]
	(a) Mass.	(b) Weight.	(c)	Force.	,		(d) '	Veloc	ity.	
5.	A single force and a couple acting in the same plane upon a rigid body							CO	3-]	
	(a) Balance each other			(b) Cannot balance each other						
	(c) Produce moment of a couple		(d)	Are ed	quivalent					
6.	Which one not a load								CO	3-]
	(a) Point load. (b)	Uniformly distributed	load.	(c) M	Ioment loa	ıd.	(d) '	Friang	gle lo	ad
7.	Hook's law holds g	ood up to							CO	4-
	(a) Yield point.	(b)Elastic limit.	(c)	Plastic	e limit.	(d)	Breaki	ng po	int.	

8.	The deformation per unit length is called												
	(a) t	ensile stress	(b) compressive stress	(c) shear stress	(d) strain								
9.	Which one not a unit of moment of inertia												
	(a) r	nm ⁴ .	(b) cm^4	(c) m ⁴	(d) mm^2 .								
10.	Mor	nent of inertia of		CO5-R									
	(a) Angular velocity of body (b) Mass of the body												
	(c) Axis of rotation of body			(d) Depends on all the abo									
PART - B (5 x 2 = 10 Marks)													
11.	. What is the effect of chromium in stainless steel?												
12.	Define parallelogram law of forces.												
13.	State Varignon's theorem.												
14.	Draw the stress-strain diagram of mild steel.												
15.	State parallel axis theorem and perpendicular axis therorem.												
			PART – C (5	x 16= 80Marks)									
16.	. (a) A Curved bar is formed of a tube of 20 mm outside diameter and CO1-U 7.5 mm thickness. The center line of this beam is a circular are of radius 225 mm. A bending moment of 3 kNm tending to increase curvature of the bar is applied. Calculate the maximum tensile and compressive stresses set up, in the bar. Or												
	(b) What are tool steel? Discus the composition structure, properties CO1-U and applications of typical tool steel.												
17.	(a)	(i) A force vec of co-ordinates Determine	etor of magnitude 100 N i s A (1,2,3) and B (5,8,12)	s represented by a line AB.	CO2-U	(8)							
		(a) Th (b) An (ii) A steel ro axial pull of Assume E= 2x	e components of the force igles with x, y and z axis. d 2m long and 20mm di 45KN. Find the change 10 ⁵ N/mm ² and Poisson Or	e along x, y and z axis. iameter is subjected to an in dimensions of the rod. 's ratio is 0.3.	CO2-U	(8)							

Or

(b) The lines of action of three forces are concurrent at the origin O CO2-Ana (16) passes through points A,B and C having coordinates, (3,0,-3), (2,-2,4) and (-1,2,4) respectively. If the magnitude of the forces are 10N, 30N and 40N, find the magnitude and direction of their resultant.

18. (a) Recall the types of welded joints with suitable diagrams. CO3- U (16)

Or

(b) A and B weighing 40N and 30N respectively, rest on smooth CO3- U (16) planes as shown in fig. they are connected by a weightless cord passing over a friction less pulley. Determine the angle θ and the tension in the cord for equilibrium.

- 19. (a) A bolt is subjected to an axial pull of 10 kN together with a CO4-App (16) transverse shear force of 5 kN. Solve the diameter of the bolt by using
 - (i) maximum principal stress theory
 - (ii) maximum strain theory
 - (iii) Octahedral shear stress theory

Or

- (b) A bar 12 mm diameter gets stretched by 3 mm under a steady CO4-App (16) load of 8000 N. What stress would be produced in the same bar by a weight of 800 N, Which falls vertically through a distance of 8 cm on to a rigid collar attached at its end? The bar is initially unstressed. Take $E= 2X \ 10^5 \ N/mm^2$.
- 20. (a) Find the moment of inertia of a T section of flange 100 mm x 30 CO5-U (16) mm and web 20 mm x 80 mm about its centroidal axes.

Or

(b) Enunciate shear and buckling in structural beams. CO5-U (16)