A		Reg. No. :							
Question Paper Code: 54901									
	B.E./E	B.Tech. DEGREE EX	AMINATION,	NOV 2	2019				
	Fourth Semester								
	Chemical Engineering								
	15UCH401- CHEMICAL ENGINEERING THERMODYNAMICS-I								
		(Regulatio	on 2015)						
Dura	ation: Three hours				Maxi	imum	n: 10	0 M	arks
		Answer ALI	L Questions						
	PART A - (10 x 1 = 10 Marks)								
1.	Zeroth law of thermod	ynamics is concerned	with					CO	1- R
	(a) extent of change in	(b) entropy change							
	(c) crystalline substan	(d) thermal equilibrium							
2.	The system unaffected	by the changes in its	environment is	6	syst	em.		CO	1- R
	(a) Closed	(b) Open	(c) Isolated		((d) M	lecha	anica	ıl
3.	There is no heat interact a process	ction between the sys	tem and the sur	roundii	ngs in			CO	2- R
	(a) isobaric	(b) isothermal	(c) adiabatic		((d) is	ocho	oric	
4.	All gases at same compressibility factor extent	reduced pressure and all deviate from	and temperant the ideal beh	iture h avior t	nave sa o the sa	ime		CO	2- R
	(a) Hess's law		(b) Principle of corresponding states						
	(c) Heat of formation	(d) None of the above							
5.	Entropy is a	function						CO	3- R
	(a) point	(b) state	(c) Maxwell		((d) pa	th		
6.	The absolute is zero for of temperatures	or a perfect crystalline	e substance at a	absolute	e zero			CO	3- R
	(a) Heat	(b) Mass	(c) Enthalpy		((d) E1	ntrop	ру	

7.	The Helmholtz free energy (A) of a system is defined as where H is enthalpy, S is entropy, U is internal energy and T is the temperature						CO4- R	
	(a) <i>A</i>	A = H - T S	(b) $A = U - T S$	(c) $A = U + P V$	(d) $A = U + I$	H S	
8.	Un measurable quantities are replaced by measurable quantities by					(CO4- R	
	(a) Clapeyron equation (b) Maxwe			(b) Maxwell's e	ll's equation			
	(c) Equation of state		(d) Ideal gas equation					
9.	Thre	Throttling is an example for process.			CO5- R			
	(a) i	sochoric	(b) isoenthalpy	(c) polytropic		(d) isobaric	:	
10.	1 ton of refrigeration is kJ/h				CO5- R			
	(a)1	2000	(b) 12660	(c) 3516.67		(d) 4184		
			PART – B (5	5 x 2= 10 Marks)				
11.	What are state function and path function? Give examples				CO1- U			
12.	Give the physical significance of the virial coefficients.				CO2- R			
13.	State Carnot's theorem. Give its physical meaning				CO3- Ana			
14.	Provide any two assumptions made in the derivation of Clausius- Clapeyron CO4- R equation from the Clapeyron equation?						- R	
15.	Define isentropic work and efficiency in a compression process				CO5- R			
			PART – C	(5 x 16= 80Marks)				
16.	(a)	a) (i) Explain the following terms in the scope of thermodynamics with examples:			namics	CO1- U	(8)	
	(a) intensive and extensive properties							
	(b) reversible and irreversible processes.							
	(ii) Nitrogen gas is confined in a cylinder and the pressure of the gas is maintained by a weight placed on the piston. The mass of the piston and the weight together is 50 kg. The acceleration due to gravity is 9.81 m/s^2 and the atmospheric pressure is 1.01325 bar. Assume frictionless piston.				CO1- App	(8)		
	Determine:							
		(i) the force exon the gas if the	xerted by the atmosphere piston is 100 mm in	ere, the piston, and the v diameter and	weight			
	(ii) the pressure of the gas.							

	(b)	(i) A cylinder fitted with a piston has a volume 0.1 m^3 and contains 0.5 kg of steam at 500 kPa. How much heat is to be supplied to bring the temperature of the steam to 823 K keeping the pressure constant? What is the work done in the process?	CO1- App	(8)
		(ii) Explain the reversible and irreversible process with neat sketch.	CO1- U	(8)
17.	(a)	(i) Discuss the $P - V - T$ behavior and thermodynamic state of a pure water fluid as a function of pressure and volume	CO2- App	(10)
		(ii) Show that Cp-Cv =R for an ideal gas	CO2-App	(6)
		Or		
	(b)	Explain the constant pressure, constant volume and constant temperature processes involving ideal gases	CO2-Ana	(16)
18.	(a)	Develop the expression for first law of thermodynamics for steady state flow process	CO3-U	(16)
		Or		
	(b)	(i) A steel casting at a temperature 725 K and weighing 35 kg is quenched in 150 kg oil at 275 K. If there are no heat losses, determine the change in entropy. The specific heat (C_P) of steel is 0.88 kJ/kg K and that of oil is 2.5 kJ/kg K	CO3-Ana	(8)
		(ii) Draw the schematic representation of a heat engine and explain the thermodynamic cycles involved	CO3-U	(8)
19.	(a)	Derive all Maxwell relations and explain the relationship between characteristics function and thermodynamic parameters.	CO4- U	(16)
		Or		
	(b)	Write the importance of Gibb's- Helmholtz equation? How would you obtain an equation for the free energy as a function of temperature?	CO4- U	(16)

20. (a) (i) Develop the general equations of balance for the duct flow of CO5- Ana (8) compressible fluids.

(ii) Discuss the Rankine cycle for the production of power from CO5- Ana (8) heat in a steam power plant.

Or

(b) Explain the steps involved in the heat and power generation using CO5- Ana (16) jet engines and rocket engines.