A		Reg. No. :							
		Question Pap	er Code	: 55902					
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019									
		Fifth S	Semester						
		Chemical	Engineerir	ng					
		15UCH502 - MA	SS TRAN	SFER - I					
		(Use of Humidity	v Chart is p	ermitted)					
		(Regula	tion 2015)						
Duration: Three hours Maximum: 100 Marks									
Answer ALL Questions									
		PART A - (10	x 1 = 10 N	(larks)					
1.	Diffusion coefficient	in a binary gas mixtu	ire at low p	oressure va	ries		CO1- R		
	(a) directly with P	(b) directly with P^2	(c) invers	sely with F	(d) ind	ependent	ofP		
2.	In the absorption of a water, the mechanism		xture of a	nmonia a	nd air in		CO1- U		
	(a) Diffusion of A three	ough stagnant B	(b) Equir	nolar cour	ter diffusio	on			
	(c) Unsteady state diff	fusion	(d) Knud	sen diffus	ion				
3.	At 750K and 1 atm, th	ne approximate value	e of the Sch	midt num	ber for air	is C	O2- App		
	(a) 0.01	(b) 0.1	(c) 1			(d) 10			
4.							CO2- R		
	(a) Difference in concentration between phases								
	(b) Difference in temperature and pressure								
	(c) Difference in temp	perature, pressure an	d concentr	ation					
	(d) Difference in chemical potential of the components								
5.							CO3- U		
	(a) Temperature rises		(b) Pre	ssure rises					
	(c) Temperature decre	eases	(d) Air	is adiabat	ically hum	idified			
			. /		-				

6.	By reducing the wet bulb temperature approach, the height of the cooling tower CO3 R							
	(a) Increases (b) Decreases (c) Remains unaffected (d) Cannot be predicted							
7.	e presence of saturated air CO4- App							
	no moisture can be removed from the solid							
	(b) only unbound moisture can be removed							
	(c) only bound moisture can be removed							
	(d) moisture in fine capillaries within the solid can be removed							
8.	A material contains 20% water on wet basis. What is the moisture content of CO4- App the material on dry basis.							
	(a) 33.3% (b) 25% (c) 16.67% (d) 80%							
9.	Example for a substance that exhibits inverse solubility is CO5- R							
	(a) KNO_3 (b) $NaCl$ (c) $Na_2SO_4.10H_2O$ (d) $MnSO_4.10H_2O$							
10.	Which one of the following is a circulating liquid evaporator crystalliser? CO5- R							
	(a) Swensen - Walker (b) Krystal (c) Draft-tube-baffle (d) Agitated batch							
	PART - B (5 x 2= 10 Marks)							
11.	Show that for molecular diffusion in a binary gas mixture, $D_{AB} = D_{BA}$ CO1- U							
12.	Prove that he mass transfer coefficients k_y and k_c are related as $k_y = k_c (P/RT)$ CO2- App							
13.	Distinguish between the wet bulb and adiabatic saturation temperature. CO3- App							
14.	How would you prevent case hardening in drying CO4- U							
15.	What are the different methods used for achieving super saturation.CO5- R							
	PART – C (5 x 16= 80 Marks)							
16.	 (a) (i) Derive from fundamentals the expression for steady state CO1 App (8) diffusion of gas A through non diffusing B. (ii) In an oxygen-Nitrogen gas mixture at 1 atm, 25°C, the CO1 App (8) concentrations of oxygen at two planes 0.2 cm apart are 15% and 30% (by volume) respectively. Calculate the flux of oxygen when (a) Nitrogen is non-diffusing (b) Equimolal counter diffusion. Diffusivity of oxygen in nitrogen is 0.26 cm²/s. 							

Or

(b) (i) Explain briefly the types of solid diffusion

(ii) Determine the rate of diffusion of acetic acid (A) across a film CO1- App (8) of non-diffusing water (B) solution 2mm thick at 17^{0} C, when the concentrations (by weight) on opposite sides of the film are 20% and 7% acid. The diffusivity of acetic acid in the solution is 0.000095 m²/S. Density of 10% and 4% acid (by weight) are 1023 Kg/m³ and 1008 Kg/m³ respectively.

17. (a) (i) Give a detailed write up on different mass transfer theories used CO2- App (8) as model for explaining the turbulent mass transfer.

(ii) In a wetted wall column carbon dioxide is being absorbed from CO2- App (8) air by water flowing at 2 atm pressure and 25^{0} C. The mass transfer coefficient k_y has been estimated to be 6.78 X10⁻⁵ kmol/m².S.mole fraction. Calculate the rate of absorption if the partial pressure of carbon dioxide at the interface is 0.2 atm and the air is pure. Also determine k_y and k_g.

Or

(b) (i) Illustrate the significance of operating line and equilibrium line CO2- App (8) for a steady state counter-current process.

(ii) The solid naphthalene is diffusing to a stream of air. Area of a CO2- App (8) thin plate is 1 m². The air is at 300K and 1 atm pressure. The diffusivity of naphthalene in in air at a given condition is $4 \times 10^{-4} \text{ m}^2/\text{s}$. Vapour pressure of naphthalene at 300K is 0.5 mm Hg. The velocity of air is 60 cm/s. Data: $\mu = 0.0185$ cP and $\rho = 1.15 \text{ kg/m}^3$. If f = 0.072 (N_{Re})^{-0.25}, then determine the mass transfer coefficient K_c (in m/s).

- 18. (a) An air water vapour sample has a dry bulb temperature of 55° C CO3- Ana (16) and absolute humidity 0.033 kg water / kg dry air at 1 standard atmp pressure. Vapour pressure of water at 55°C is 118 mm Hg, calculate
 - (i) Molal Humidity
 - (ii) Relative Humidity
 - (iv) Saturated humidity
 - (v) % Humidity
 - (vi) Humid volume
 - (vii) Humid heat
 - (viii) Enthalpy.

(b) A mechanical draft cooling tower is to be designed to cool 75000 CO3- Ana (16) kg/hr of water from 45°C using 62500 kg of dry air per hour. 24°C is suggested as the design air wet bulb temperature. Calculate the number of transfer units and hence the height of the packed section if the height of a transfer unit for the condition stated above is 4 m. It may be assumed that the liquid phase resistance to heat transfer is negligible. Temperature t °C - saturated enthalpy in kcal/kg dry air (H) data is as follows:

t °C	24	29	32.5	38	43.5
Н	20	25	28	36	46

19. (a) (i) A filter cake is dried for 7 hours from an initial moisture CO4- App (8) content of 35% to 8% (wet basis).Calculate the time required in hours to dry the filter cake from 35% to 2% (wet basis) Equilibrium moisture content is negligible and Critical moisture content is 10% on dry basis. Assume that the rate of drying in the falling rate period is directly proportional to the free moisture content.

(ii) Classify dryers and explain the construction and working of a CO4- App (8) spray dryer

Or

(b) (i) It takes 9 hours for a porous solid to reduce the moisture CO4- App (8) content from 45 to 10% when dried in a batch dryer under constant drying conditions. The critical moisture content was found to be 25% and the equilibrium moisture 3%. All moisture contents are on the dry basis. Assuming that the rate of drying during falling rate period is proportional to the free moisture content, how long should it take in hours to dry a sample of the same solid from 35% to 5% under the same drying conditions.

(ii) Explain the construction and working of a rotary dryer with a CO4- App (8) neat sketch.

20. (a) (i) Sodium nitrate solution at 50 °C contains 45 % by weight of CO5-U (8) sodium nitrate.

(a) Find the weight percentage of saturated solution of this solution

(b) Find out the weight of sodium nitrate crystals formed if 1000 kg of this solution is cooled to 10 °C (iii) Find out the percentage yield of this process. Data: Solubility at 50 °C = 104.1 g of NaNO₃/ 100 g of water. Solubility at 10 °C = 78 g of NaNO₃/ 100 g of water.

(ii) Explain Meir's supersaturation theory with a neat diagram CO5- U (8)

Or

(b) (i) A sodium carbonate solution available at a temperature of 40° C CO5-U (8) with a solute content of 30%. Find out the weight of Na₂CO₃.10H₂O crystal formed if 2000 kg of this solution is cooled to 10°C. Also find out the yield. Solubility at 10°C = 12.5 g of Na₂CO₃/100 g of water.

(ii) With a help of a neat sketch explain the construction and CO5-U (8) working of a Swenson-walker crystallizer.