Question Paper Code: 55901

B.E./B.Tech. DEGREE EXAMINATION, NOV 2019

Fifth Semester

Chemical Engineering

15UCH501-CHEMICAL ENGINEERING THERMODYNAMICS

(Regulation 2015)

(Steam table and compressibility chart permitted in examinations)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(10 x 1 = 10 Marks)$$

- In an ideal gas mixture, the fugacity of a component in the mixture is equal to 1. CO1- R (a) Partial pressure (b)Chemical Potential (c)Mole fraction (d) Total pressure Excess property is the difference between actual property and the property 2. CO1- R that would be calculated for (a) Same pressure (b) Same temperature (c) Volume (d) Same pressure, temperature and composition Helmholtz free energy is defined as CO2- R 3. (b) A = S - UT(a) A = U-TS(c) A = T-US(d) A = U + TSAs pressure approaches zero, the ratio of fugacity to pressure (f/P) for a CO2- R 4 gas approaches (a) Zero (b) An indeterminate value (d) Infinity (c) Unity
- 5. Which of the following liquid models will be unsuitable for representing a CO3- R mixture of water and n butanol?

(a) NRTL (b)WILSON (c) UNIFAC (d) UNIQUAC
6. The activity coefficient of benzene in a benzene- toluene mixture is CO3- R
(a) Infinity (b)Unity
(c) Zero (d) Depends on temperature and pressure

A

7.	-		ht in contact with a dispersion freedom of the system are							
	(a) 4	1	(b) 3	(c) 5	(d) 6					
8.	For	a highly favorabl	e chemical reaction, the	e standard free energy change is	C	04 - R				
	(a) Z	Zero	(b) Unity	(c) Positive	(d) Nega	tive				
9.	-	system is said to be at equilibrium, if the entropy of the system has CO5- R ched value.								
	(a) N	Minimum	(b) Zero	(c) Maximum	(d) High					
10.	Out	of the following	refrigeration cycles, wh	ich one has maximum COP?	С	05 - R				
	(a) A) Air cycle								
	(b) Carnot cycle									
	(c) Ordinary vapor compression cycle									
	(d) Vapor compression with a reversible expansion engine									
	PART - B (5 x 2= 10 Marks)									
11.										
12.		uss the effect of pressure on the azeotropic composition. CO2- R								
13.		tate the Duhem's theorem CO3- R								
14.	State the Dulieff stilleoremCO3- FDefine equilibrium constant K of a chemical reaction.CO4- F									
15.		Define equilibrium constant K of a chemical reaction.CO4- IList the various methods of refrigeration.CO5- I								
10.	C									
1.6			× ×	x 16= 80 Marks)		(1.6)				
16.	(a)		• •	nental technique for the (thalpy change in mixing.	COI-App	(16)				
			Or							
	(b)	moles hydrogen	at 298 K and 1 bar and K and 3 bar. Calculat	bartments. One contains 3.0 d d the other contains 1.0 mol, e the free energy of mixing	CO1-App	(16)				
17.	(a)	in a binary mixt		fugacity of each component ith increase in concentration	CO2-U	(16)				
	Or									
	(b)	Deduce the Clap Equilibrium dG	beyron equation using the equation using the equation between the equation and the equation between the equation of the equati	he criterion of	CO2-U	(16)				

- 18. (a) Derive the following activity co-efficient models for over all CO3-App (16) mixture composition.
 - (i) Wohl's three-suffix Equation
 - (ii) Margules Equation
 - (iii) Van Laar Equation

Or

- (b) Show that the following equations provide the criteria of CO3-App (16) equilibrium under certain constraints
 - (i) $dU_{S,V}=0$,
 - (ii) $dS_{H,P} = 0$
- 19. (a) A gas mixture containing 3 mol Co_2 , 5 mol H_2 and 1 mol water is CO4-App (16) undergoing the following chemical reactions,

 $CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$

 $CO_2 + H_2 \rightarrow CO + H_2O$

Develop expressions for the mole fraction of the species in terms of the extent of reaction.

Or

- (b) Ammonia synthesis reaction is represented by CO4-App (16) $N_2 + 3H_2 \rightarrow 2NH_3$ The reactant stream consists of 1 mol N₂, 3 mol H₂ and 2 mol Argon. The temperature and pressure of the reaction are 675 K and 20 bar. The equilibrium constant for the reaction is 2 x 10⁻⁴. Determine how the conversion of nitrogen is affected by the presence of argon.
- 20. (a) Explain the working of Vapour Absorption Refrigeration with a neat CO5-App (16) sketch.

Or

(b) 28 tonnes of ice from and at 0^{0} C is produced per day in an ammonia CO5-App (16) refrigerator. The temperature range in the compressor is from 25^{0} C to -15^{0} C. The vapour is dry and saturated at the end of compression and an expansion valve is used. Calculate COP of the system and heat rejected in the condenser. Also calculate the power required to drive the compressorif the actual co-efficient of performance is 62% of the theoretical.

Temperature	Enthalpy kJ/kg		Entropy	Entropy	
⁰ C	Liquid	Vapour	of liquid	of vapour	
	1	1	kJ/kg K	kJ/kg K	
25	100.04	1319.22	0.3473	4.4852	
-15	-54.56	1304.99	-2.1338	5.0585	