Question Paper Code: 54B01

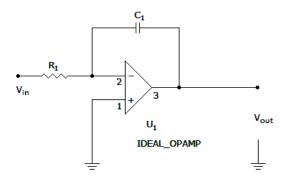
B.E. / B. Tech. DEGREE EXAMINATION, NOV 2019

Fourth Semester

Biomedical Engineering

15UBM401-ANALOG AND DIGITAL INTEGRATED CIRCUITS

(Regulation 2015)


Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1. What is the output waveform?

CO1-R

- (a) Sine wave
- (b) Square wave
- (c) Saw tooth wave
- (d) Triangle wave
- 2. An op-amp circuit in which the output voltage is equal to the difference between the two input voltages is called a(n) _____

CO1-R

(a) Integrator

(b) Differentiator

(c) Differential amplifier

(d) Voltage regulator

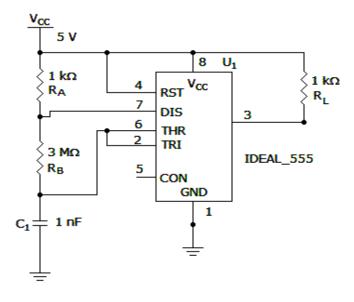
3.

The reference voltage for the comparator in the given circuit equals

(a) 0 V

- (b) +8.8 V
- (c) + 16 V

(d) +7.2 V


- 4. The practical use of binary-weighted digital-to-analog converters is limited to:
- CO2-R

- (a) R/2R ladder D/A converters
- (b) 4-bit D/A converters

(c) 8-bit D/A converters

- (d) Op-amp comparators
- 5. What is the frequency of this 555 astable multivibrator?

CO₃-R

- (a) 278 Hz
- (b) 178 Hz
- (c) 78 Hz

(d) 8 Hz

6. In a PLL, to obtain lock, the signal frequency must:

CO₃-R

- (a) come within the lock range
- (b) be less than the capture frequency
- (c) come within the capture range
- (d) be greater than the capture frequency
- 7. How many NAND circuits are contained in a 7400 NAND IC?

CO4-R

(a) 1

(b) 2

(c)4

- (d) 8
- 8. Which output expression might indicate a product-of-sums circuit construction?

CO4-R

(a) $Y = \overline{A} \cdot \overline{B} = \overline{A + B}$

(b) $Y = A \cdot B = A \cdot B$

(c) $Y = A\overline{B} + C\overline{D}E$

- $(d) Y = (\overline{A} + \overline{B}) \cdot (A + B)$
- 9. A basic S-R flip-flop can be constructed by cross-coupling which basic logic gates?
- CO5-R

(a) AND or OR gates

(b) XOR or XNOR gates

(c) NOR or NAND gates

(d) AND or NOR gates

10.	The	evolution of PLD	hegan with			CO5-R				
10.		EROM	(b) RAM	(c) PROM	(d) EEPRO					
	(a) 1	EKOWI	(u) EEI KO	111						
	$PART - B (5 \times 2 = 10 Marks)$									
11.	Sketch the symbolic diagram of Operational amplifier. CO1									
12.	Mer	ntion any four imp		CO2-R						
13.	List	the features of 55		CO3-R						
14.	Rep	resent (234) ₁₀ in E		CO4-R						
15.	Def	ine ROM.		CO5-R						
PART – C (5 x 16= 80Marks)										
16.	(a)		-	output voltage of a three stage discuss its applications.	CO1 -App	(10)				
		(ii) Explain the v	vorking of differe	entiator circuit using Op-Amp.	CO1 -App	(6)				
	Or									
	(b)			g an Op-Amp to perform the yze its output for various input	CO1- App	(10)				
		(ii) Demonstrate diagram.	the working of C	lipper circuit with a suitable	CO1 -App	(6)				
17.	(a)	(i) Design a Schr	mitt trigger for U'	TP = 0.5 V and $LTP = -0.5 V$.	CO2 -App	(8)				
			ne working of the the help of its		CO2- App	(8)				
	(b)	(i) Educate the detail.	operations of se	econd order low pass filter in	CO2-Ana	(8)				
				R-2R and inverted R-2R type and mentions its merits and	CO2-Ana	(8)				
18.	(a)		put signal with f	an A-stable multivibrator to requency 2kHz and duty cycle	CO3- Ana	(16)				
			Or							

(b) Sketch the functional diagram and explain the operation of CO3-Ana

VCO. Also derive an expression for $f_{\rm o}.$

(16)

19. (a) Using K-map, Find minimum SOP expression for the function CO4-U (16) $F = \sum m(2,5,7,10,11,14) + \sum d(1,4,15)$

Or

(b) Simplify the following Boolean functions X and Y to minimum CO4-Ana number of literals and implement with NOR logic gates. (16)

				0 0
A	В	C	X	Y
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

20. (a) A sequential circuit with two JK flip flops and one input X is CO5-U (16) described by the following input equation $J_A = B$, $J_B = \bar{X}$,

 $K_A = BX$, $K_B = AX + AX$ Draw state table and determine state equation of it.

Or

(b) Implement the following three Boolean functions with a PLA CO5-U

$$F_1(A,B,C) = \sum (0,1,2,4)$$

$$F_2(A,B,C) = \sum (0,5,6,7)$$

$$F_3(A,B,C) = \sum (0,3,5,7)$$

(16)