С		Reg. No. :											ļ
	ſ												
		Question Pape	er C	ode	: 55	B04							
	B.E. /	B.Tech. DEGREE I	EXAI	MIN	ATI	ON, I	VOV	201	9				
		Fifth	Seme	ester									
		Biomedica	l Eng	ginee	ring								
	15UBM504	- PRINCIPLES OF	DIGI	TAL	SIC	SNAI	D PR	OCI	ESSI	NG			
		(Regula	tion	2015)								
Duı	ation: Three hours	Answer A	LL Ç	uest	ions			Ma	axim	um:	100	Ma	:ks
		PART A - (5	x 1 =	= 5 N	/lark	s)							
1.	How many complex multiplications are need to be performed for each FFT C algorithm?										CO	- R	
	(a) $(N/2)\log N$ (b) $N\log_2 N$ (c) $(N/2)\log_2 N$ (d) None of the mention											onec	
2.	In IIR Filter design by the Bilinear Transformation, the Bilinear CO2-I Transformation is a mapping from												
	(a) Z-plane to S-plane	9		(b) \$	S-pla	nne to	o Z-p	lane					
	(c) S-plane to J-plane	(d) J-plane to Z-plane											
3.	Which of the following is introduced in the frequency sampling CO3- realization of the FIR filter?											3- F	
	(a) Poles are more in number on unit circle												
	(b) Zeros are more in number on the unit circle												
	(c) Poles and zeros at equally spaced points on the unit circle												
	(d) None of the mentioned												
4.	How many quantization errors are present in one complex valued CO4 multiplication?												4- F
	(a) One	(b) Two	(c) Th	ree					(d) F	our		

5. FFT length in Barlett method is

6.

7.

8.

(a) Zero (b) One (c) $L=\frac{0.9}{\Delta f}$ (d) None of the above

 $PART - B (5 \times 3 = 15 Marks)$

- 9. Define dead band.
- 10. List the advantages and disadvantages of Nonparametric Power Spectrum CO5-R Estimation.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Evaluate radix 2 – DIT FFT algorithm and obtain DFT of the CO1-App (16) sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$.

Or

- (b) Apply DFT and IDFT method for the given sequences CO1- App (16) $h(n) = \{1, 2, 3, 4\}$ and $x(n) = \{1, 2, -2, 1\}$ to find circular convolution.
- 12. (a) If $H_a(S) = \frac{1}{(s+1)(s+2)}$, find the corresponding H(z) using impulse CO2- App (16) invariant method for sampling frequency of 5 samples/Second.
 - Or
 - (b) Solve the following pole zero IIR filter into a lattice ladder CO2- App (16) structure.

$$H(z) = \frac{1 + 2z^{-1} + 2z^{-2} + z^{-3}}{1 + \frac{13}{24}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}}$$

13. (a) Design an ideal high pass filter with a frequency response CO3- Ana (16) $H_d(e^{j\omega}) = 1 \text{ for } \frac{\pi}{4} \le |\omega| \le \pi$ $= 0 \text{ for } |\omega| \le \frac{\pi}{4}$

Find the values of h(n) for N = 11 using hamming window. Find H(z) and determine the magnitude response.

CO4- R

(b) (i) Determine the frequency response of FIR filter defined by CO3-Ana (6) y(n) = 0.45 x(n) + x(n-1) + 0.45 x(n-2). Calculate the phase and group delay.

(ii) Estimate the filter coefficient h(n) for N=7 obtained by CO3-Ana (10) sampling

$$H_{d}(e^{j\omega}) = e^{-j(N-1)\omega/2} \quad for \quad 0 \le |\omega| \le \frac{\pi}{2}$$
$$0 \qquad for \quad \frac{\pi}{2} \le |\omega| \le \pi$$

14. (a) Explain in detail the errors resulting from rounding and truncation. CO4- Ana (16)

Or

- (b) i) Analyze the effects of co-efficient quantization in FIR filter? CO4- Ana (7)
 ii) Distinguish between fixed point and floating point arithmetic. CO4- Ana (9)
- 15. (a) Explain discrete wavelet transform. CO5- U (16) Or
 - (b) Explain the Welch method of power spectrum estimation. CO5- U (16)