A		Reg. No. :											
				C			0.4	1					
Question Paper Code: 53A04													
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2019													
	Third Semester												
	Agricultural Engineering												
15UAG304 - FLUID MECHANICS AND HYDRAULICS													
		(Regula	tion	2015)								
Dura	ation: Three hours]	Maxi	imun	n: 10	00 M	arks
		Answer Al											
1	Curfoss tonsion is due	PART A - (10	x 1	= 10	Mar	ks)						CC	ת 1 ו
1.	Surface tension is due to			CO1-R								Л-К	
	(a) Cohesion and adhesion			(b) Cohesion only									
	(c) Adhesion only	Adhesion only				(d) None of the above							
2. The principle of floatation of bodies is based on the premise of									CC)1-R			
	(a) Newtons law of viscosity			(b) Newtons first law									
	(c) Metacentre			(d) None of the mentioned									
3.		Three flows named as 1,2 and 3 are observed. The Reynold's number for the CO2-A hree are 100, 1000 and 10000. Which of the flows will be laminar?						App					
	(a) Only 1	(b) Only 1 and 2	(c) Oi	nly 3				((d) 1	, 2 a	and 3	
4.	Streamline and equipotential lines in a flow field CO2-F)2-R				
	(a) are parallel to each other			(b) are identical to each other									
	(c) are perpendicular to each other			(d) intersect at acute angles									
5 measures velocity at a poi				f flui	d in	a stro	eam.				(CO3-	App
	(a) Venturi meter	(b) Pitot-Static tub	es	(c) p	Hm	eter	(d) No	ne o	f the	men	tion	ed
6.	Which one of the following is a major loss?							CC)3-R				
	(a) Frictional loss	al loss (b) Shock loss (c) Entry loss (d) Ex				xit l	tit loss						

7.	The	discharge in an op		CO4-R						
	(a) Z	Zero (b) Minimum (c) Maximum		(d) None of these						
8.	The device used for measuring discharge of irrigation channel, well or CO4 canal outlet is called									
	(a) V	Weir	(b) Notch	(c) Meter gate	(d) All are correct					
9.	The ratio of inertia force and gravitational force is called as					CO5-R				
	(a) I	(a) Reynolds number (b) Stokes number (c) Froude's number (d) Euler's number				
10.	The	fluid coming into	CO5-R							
	(a) [Throttle	(b) Impeller	(c) Nozzle	(d) Governor					
PART - B (5 x 2= 10 Marks)										
11.	Wri	te the equation of	CO1-R							
12.	Define Streak line .					CO2-R				
13.	List out the types of minor losses in pipes.					CO3-R				
14.	. What is meant by critical flow?					CO4-R				
15.	Dist	inguish between p	CO5-Ana							
PART – C (5 x 16= 80 Marks)										
16.	viscosity 2.0 Ns/m ² and specific gravity 0.9. A metallic plate $1.2 \text{ m X } 1.2 \text{ m X } 0.2 \text{ cm}$ is to be lifted up with a constant velocity of 0.15 m/sec, through the gap. If the plate is in the middle of the gap, find the force required. The weight of the plate is 40 N.									
Or										
	(b)	With the help of bourdon tube pr		he working principle of	CO1 -U	(16)				
17.	(a)	•	-	$=4x^3$ i-10x ² yj+2tk. Find the ticle at (2,1,3) at time t=1.	CO2 -U	(16)				
	Or									
	(b)	-	tion of continuity. O on in Cartesian co-ord	btain an expression for a linates.	CO2 -U	(16)				

18. (a) The water is flowing through a pipe of diameter 30 cm and 20 cm CO3 -U (16)at the section 1 and 2 respectively. The rate of flow through pipe is 35 litre/s. The section 1 is 8 m above datum and section 2 is 6 m above datum. If the pressure at section 1 is 44.5 N/cm^2 . Find the intensity of pressure at section 2.

Or

(b) Derive the expression for Darcy Weisbach formula. CO3 -U (16)

19. (a) Derive the condition for the best side slope of the most CO4-App (16)Economical trapezoidal channel

Or

- (b) A cipolletti weir of crest length 60 cm discharges water. The head CO4 App (16)of water over the weir is 360 mm. Find the discharge over the weir if the channel is 80 cm wide and 50 cm deep. Take $C_d = 0.60.$
- 20. (a) Using Buckingham's π - theorem, show that the velocity through a CO5- U (16)circular orifice is given by

$$V = \sqrt{2gH}\phi \left[\frac{D}{H}, \frac{\mu}{\rho VH}\right]$$

where H is the head causing flow, D is the diameter of the orifice, μ is co-efficient of viscosity, ρ is the mass density and g is the acceleration due to gravity.

Or

(b) Draw a neat sketch of reciprocating pump and explain the CO5-U (16)working principle of reciprocating pump.