Reg. No. :					
Reg. 110					

Question Paper Code: 41333

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2016

Third Semester

Electrical and Electronics Engineering

		14UEE303 - FIELD	THEORY	
		(Regulation 20	014)	
	Duration: Three hours		M	aximum: 100 Mark
		Answer ALL Que	estions	
		PART A - (10 x 1 =	10 Marks)	
1.	Vector algebra includes			
	(a) Addition	(b) Subtraction	(c) Multiplication	(d) All the above
2.	Cross product of two vector	rs, $\bar{A} \times \bar{B} =$		
	(a) $ A B \sin \theta \overline{a_n}$		(b) $ A B \cos$	$\theta \overline{a_n}$
	(c) $ A B \tan \theta \overline{a_n}$		(d) $ A B $ sec	$\theta \ \overline{a_n}$
3.	The space surrounding an e	electric charge, over	which the electric for	rce of attraction (or

- .) repulsion exists, is called its
 - (a) Coulombs Law
- (b) Charge
- (c) Electric Field
- (d) Gauss Law

- ε_0 is 4.
 - (a) $8.854*10^{-12}$ F/M

(b) $6.854*10^{-12}$ F/M

(c) $6.854*10^{-12}$ H/M

- (d) 8.854*10⁻¹² F/M
- 5. The number of magnetic flux crossing unit area perpendicularly is called
 - (a) Magnetic intensity

(b) Magnetic flux density

(c) Magnetic Force

(d) Magnetic field lines

6. \overline{H} at the center of a circular current carrying coil

(a)
$$\frac{N}{2R} AT/M$$

(a)
$$\frac{N}{2R} AT/M$$
 (b) $\frac{NI}{R} AT/M$ (c) $\frac{NI}{2R} AT/M$ (d) $\frac{2NI}{R} AT/M$

(c)
$$\frac{NI}{2R} AT/M$$

(d)
$$\frac{2NI}{R} AT/M$$

- Magnetic material which has iron as one of its constituents is known as
 - (a) Ferro magnetic material

(b) Diamagnetic material

(c) Paramagnetic material

(d) Conducting magnetic material

Reluctance of magnetic circuit

(a)
$$\frac{A}{lu}$$

(b)
$$\frac{l}{Au}$$

$$(c)\frac{l}{u}$$

$$(d)\frac{A}{u}$$

9. Velocity of propagation of electro-magnetic wave through free space

(a)
$$V = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} m/sec$$

(b)
$$V = \sqrt{\mu_0 \varepsilon_0} \ m/sec$$

(c))
$$V = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} m^2 / \text{sec}$$

(d)
$$V = \sqrt{\mu_0 \varepsilon_0} m^2 / \text{sec}$$

10. A point form of faraday's law is

(a)
$$\nabla . \overline{D} = -\rho_v$$

(b)
$$\nabla . \overline{D} = \rho_I$$

(c)
$$\nabla \times \bar{E} = -\frac{\partial \bar{B}}{\partial t}$$

(d)
$$\nabla \times \bar{E} = \frac{\partial \bar{B}}{\partial t}$$

PART - B (5 x
$$2 = 10 \text{ Marks}$$
)

- 11. What is curl of vector function and their physical interpretation.
- 12. Compare electric circuit and magnetic circuits.
- 13. Formulate the Laplace equation.
- 14. Distinguish between scalar and vector potentials.
- 15. Define wave propagation.

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

16. (a) Explain briefly the spherical and cylinderical coordinate systems. (16)

Or

	(b)	Exp	plain briefly the following	
			(i) Curl of a vector	(6)
			(ii) Divergence theorem	(5)
			(iii) Stoke's theorem	(5)
17.	(a)	(i)	State and explain Gauss's law.	(8)
		(ii)	Derive the expression for Poisson's and Laplace's equations.	(8)
			Or	
	(b)	_	plain the capacitance of a parallel plate capacitor and calculate the equivacitance value using the following details.	alent
			Plate area $A = 100 cm^2$	
			Dielectric-1 $\operatorname{Er}_1 = 4$, $\operatorname{d}_1 = 2 mm$	
		TC C	Dielectric-2 $\operatorname{Er}_2 = 3$, $\operatorname{d}_2 = 3 mm$	
			200V is applied across the plates, what will be the voltage, gradient across lectric?	each (16)
18.	(a)		velop an expression for magnetic field intensity on the axis of a circular rent carrying a current I and also find at the center of the coil, where $h=0$.	loop (16)
			Or	
	(b)	Dei	rive the energy stored and hence energy density in a magnetic field.	(16)
19.	(a)	(i)	State and explain Faraday's electromagnetic induction law.	(6)
		(ii)	Explain the relation between field theory and circuit theory.	(10)
			Or	
	(b)	Dei	rive the Maxwell's equation and obtain them in point and integral form.	(16)
20.	(a)	Wh	nat is the significance of Poynting vector and also explain it.	(16)
			Or	
	(b)	(i)	What is the different conditions of uniform plane wave?	(8)
		(ii)	Derive a physical phenomenon of electro-magnetic wave equation.	(8)