Reg. No. :

Maximum: 100 Marks

Question Paper Code: 31451

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2016

Fourth Semester

Electronics and Instrumentation Engineering

01UEI401 – CONTROL ENGINEERING

(Regulation 2013)

Duration: Three hours

1.

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

-

Differentiate open loop and closed loop system.

2. Give the reduced form of the block diagram shown in Figure 1.

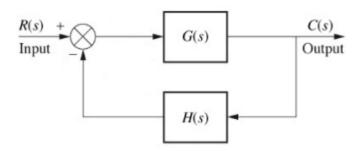
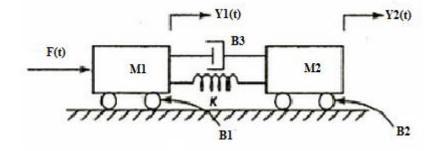
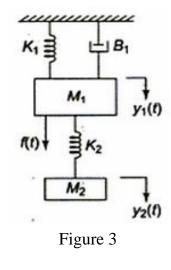



Figure 1


- 3. List the time domain specifications.
- 4. Define steady state error.
- 5. Define phase margin and gain margin.
- 6. List any two advantages of frequency response analysis over the time domain.
- 7. State Nyquist stability criterion.
- 8. Give the expression for finding the 'centroid' in the construction of root locus.
- 9. List the properties of state transition matrix.
- 10. Write the various canonical models for state space representation.

- PART B (5 x 16 = 80 Marks)
- 11. (a) (i) For the mechanical system shown in Figure 2, compute the transfer function of $Y_2(S) / F(S)$. (8)

(ii) For the mechanical system shown in Figure 3, compute the transfer function of $Y_{I}(S)/F(S)$. (8)

Or

(b) (i) Simplify the block diagram shown in Figure 4, using block diagram reduction technique compute the closed loop transfer function of the system. (10)

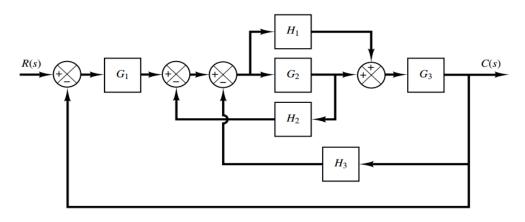


Figure 4

(ii) Using the Mason's rule, determine the transfer function of the signal flow graphs shown in Figure 5.

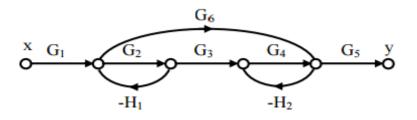


Figure 5

- 12. (a) (i) Derive an expression for time response of a second order under damped unity feedback system when excited with an unit step input. (10)
 - (ii) Derive an expression of peak time and rise time for time response of a second order under damped unity feedback system.

Or

- (b) A unity feedback system has a open loop transfer function as $G(S) = \frac{10(S+1)}{S^2(5S+6)}$. Determine the steady state error, if $r(t) = 1 + 4t + 3t^2$. (16)
- 13. (a) Sketch the Bode plot for $G(S)H(S) = \frac{2}{S(S+1)(1+0.2S)}$, and compute phase margin, gain margin and cross over frequencies. (16)

Or

- (b) Design a suitable compensator for a system with open-loop transfer function is $G(s) = \frac{1}{S(s+1)(0.5s+1)},$ so that the static velocity error constant K_v is 5 sec⁻¹, the phase margin is at least 40°, and the gain margin is at least 10 dB. (16)
- 14. (a) (i) Ascertain the stability of the system given by characteristic equation $S^{6} + 3S^{5} + 5S^{4} + 9S^{3} + 8S^{2} + 6S + 4 = 0$, by Routh array criterion. (10)
 - (ii) Determine Routh array and hence comment on the stability of the system, whose characteristic equation is given by $S^4 + S^3 + 2S^2 + 2S + 1 = 0$. (6)

Or

(b) Sketch the root locus of a unity feedback system whose open loop transfer function is given by $G(S)H(S) = \frac{k}{S(S+1)(S+2)}$, and compute the value of k on the verge of stability.

(16)

31451

15. (a) (i) Compute the state-space representation of the following transfer function system

is given by
$$\frac{Y(S)}{U(S)} = \frac{S+6}{S^2+5S+6}$$
. (8)

(ii) Compute the state transition matrix for the state model whose system matrix is given by $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$. (8)

Or

(b) (i) Compute $x_1(t)$ and $x_2(t)$ of the system described by $\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$,

where the initial conditions are $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. (8)

(ii) Compute the transfer function of a linear time-invariant system is represented by the state equation $\dot{X} = \begin{bmatrix} 0 & 3 \\ 0 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix} U$ and $Y = \begin{bmatrix} 2 & 1 \end{bmatrix} X$. (8)