Question Paper Code: 31344

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2016

Fourth Semester

Electronics and Communication Engineering

01UEC404 - SIGNALS AND SYSTEMS

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. Find even and odd part of the following DT signals $x(n) = 3 + 2n + 5n^2$.
- 2. State any two properties of impulse signal.
- 3. State Dirichlets conditions.
- 4. Define convolution Integral.
- 5. Find the differential equation relating the input and output of a CT system represented by $H(S) = \frac{4}{S^2 + 8S + 4}.$
- 6. Find Laplace transform of $\delta(t-5)$ and u(t+5).
- 7. Define Nyquist rate.
- 8. State the relation between DTFT and Z transform.
- 9. Find Z transform of $a^n u(n)$.
- 10. State the condition for an LTI discrete time system to be causal and stable.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) (i) Check the periodicity of the following signal and find its fundamental time period

(i)
$$x(n) = e^{j6\pi n}$$
 (ii) $x(t) = 2sin(3t+1) + 3sin(4t-1)$ (8)

(ii) Define energy and power signals and find whether the given signal $x(n) = \left(\frac{1}{3}\right)^n u(n)$ and $x(t) = e^{j(\pi/2 t + \pi/8)}$ are energy and power. (8)

Or

(b) Determine whether the following systems are linear, time invariant, causal and static

(i)
$$y(t) = x(t) \cos \omega t$$

(ii) $y(n) = x^{2}(-n) + x(n + 1)$
(iii) $y(n) = ax(n) + b$
(iv) $y(t) = \frac{dx(t)}{dt}$
(16)

- 12. (a) (i) State and prove any five properties of Fourier transform. (10)
 - (ii) Find the response of the system for the input $x(t) = 2e^{-5t}$ using Fourier transform if the impulse response of an LTI system is $h(t) = 2e^{-3t}u(t)$. (6)

Or

- (b) (i) Obtain Trigonometric Fourier series for the full wave rectified sine wave. (12)
 - (ii) Derive the relation between trigonometric Fourier series and exponential Fourier series.
- 13. (a) (i) Obtain the inverse laplace transform of the function

$$X(S) = \frac{1}{S^2 + 3S + 2}, \ ROC: \ -2 < Re(S) < -1, \ Re(s) > -1, \ Re(s) < -2$$
(8)

(ii) Obtain the convolution of the following two signals $x(t) = e^{2t} u(t)$ and $h(t) = e^{-5t} u(t)$. (8)

Or

- (b) (i) The input x(t) and output y(t) for a system satisfy the differential equation $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = 6x(t).$ Compute the transfer function and impulse response. (6)
 - (ii) Draw the direct form, cascade and parallel form representation.

$$\frac{d^2 y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 4\frac{dx(t)}{dt} + x(t)$$
(10)

14. (a) State and Explain the sampling theorem for low pass bandlimited signal and explain the process of reconstruction of the signal from its samples. (16)

Or

- (b) (i) Find the frequency response and impulse response for the difference equation $y(n) - \frac{1}{6} y(n-1) - \frac{1}{6} y(n-2) = x(n)$ (8)
 - (ii) Find DTFT and plot the spectrum for $x(n) = \left(\frac{1}{2}\right)^n u(n)$ (4)

(iii) Find DTFT for
$$x(n) = \{1, 2, -3, 1, -2, 1, 3\}$$

 \uparrow (4)

15. (a) (i) Determine the state model of the system governed by the equation

$$y(n) - 3y(n - 1) - 2y(n - 2) = x(n) + 5x(n - 1) + 6x(n - 2)$$
(10)

(ii) Define ROC and State any four properties.

Or

(b) (i) Determine the impulse response and sketch the ROC for

$$H(Z) = \frac{0.2 Z}{(Z - 0.4)(Z - 0.2)} ;$$
(a) $|Z| > 0.2,$
(b) $|Z| < 0.4,$
(c) $0.2 < |Z| < 0.4.$
(6)

(ii) Determine convolution for $x(n) = \{1, 2, -1, 2, 3\}$ and $h(n) = \{1, 2, 3, 0, 1, -2\}$ using graphical method. (10)

(6)