Reg. No.:					

Question Paper Code: 41322

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2016

Third Semester

Computer Science and Engineering

14UCS302 - DATA STRUCTURES

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

- 1. Which of the following operations is performed more efficiently by doubly linked list than by singly linked list?
 - (a) Deleting a node whose location in given
 - (b) Searching of an unsorted list for a given item
 - (c) Inverting a node after the node with given location
 - (d) Traversing a list to process each node
- The data structure required to check whether an expression contains balanced parenthesis is
 - (a) stack

- (b) queue
- (c) tree
- (d) array

- The prefix form of an infix expression a + b c * d is
 - (a) + ab *cd
- (b) +abc * d
- (c) +ab * cd (d) + * abcd
- 4. In order to get the information stored in a binary search tree in the descending order, one should traverse it in which of the following order?
 - (a) left, root, right

(b) root, left, right

(c) right, root, left

(d) right, left, root

5.	Which amongst the fo	ollowing cannot be a	balance factor of any	node of an AVL tree?							
	(a) 1	(b) 2	(c) 0	(d) -1							
6.	The process of access data on a	sing data stored in a	a serial access memo	ory is similar to manipulating							
	(a) heap	(b) queue	(c) stack	(d) binary tree							
7.	7. If h is any hashing function and is used to hash n keys in to a table of size m , where $n <= m$, the expected number of collisions involving a particular key x is										
	(a) less than 1	(b) less than n	(c) less than m	(d) less than n/2							
8.	If unions are done by more than	y size, if a node is in	nitially at depth 0, th	e depth of any node is never							
	(a) n-1	(b) log n	(c) n	(d) n/2							
9.	9. In breadth first search of graph, which of the following data structure is used?										
	(a) stack	(b) queue	(c) linked List	(d) none of the above							
10.	The spanning tree of	connected graph with	n 10 vertices contains								
	(a) 9 vertices	(b) 11 edges	(c) 10 edges	(d) 9 edges							
		PART - B (5	x = 10 Marks								
11.	State ADT for push of	peration.									
12.	Define a threaded bin	ary tree.									
13.	Express the percolate	up strategy in Heap	tree ADT?								
14.	Define disjoint set.										
15.	Define articulation po	oint.									
		PART - C (5	x 16 = 80 Marks)								
16.			ne advantages of usin	g doubly linked list. Write an y linked list. (8)							
	(ii) Define circu	larly linked list wit	th neat diagram. Wi	rite an algorithm to add an							

element at the end of circular linked list.

(8)

(b)	Explain	the	Linked	implementation	of	stack	and	queue.	How	will	you	represent	a
	Polynom	ial ı	ising an	array?								(16	5)

17. (a) (i) A binary tree *T* has 10 nodes. The in-order and preorder traversals of *T* yield the following sequence of nodes:

Inorder	D	В	Н	Е	A	Ι	F	J	С	G
Preorder	A	В	D	Е	Н	C	F	Ι	J	G

Draw the tree T. (8)

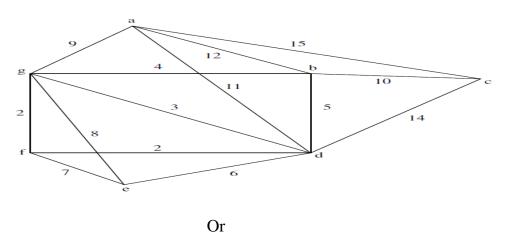
(ii) Define a threaded binary tree. Write an algorithm for in-order traversal of a threaded binary tree. (8)

Or

- (b) (i) What are expression trees? Represent the following expression using a tree. Comment on the result that you get when this tree is traversed in Preorder, Inorder and Postorder. (a-b)/((c*d)+e). (8)
 - (ii) What is a Binary Search Tree (BST)? Make a BST for the following sequence of numbers. 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48. (8)
- 18. (a) (i) Show the result of inserting 2, 1, 4, 5, 9, 3, 6, and 7 into an initially empty AVL tree. (8)
 - (ii) Define Splay trees. Explain the rotations in Splay trees. (8)

Or

- (b) (i) Draw a B-tree of order 3 for the following sequence of keys 2, 4, 9, 8, 7, 6, 3, 1, 5, 10.
 - (ii) How will you represent a max-heap sequentially? Explain with an example. Write an algorithm to insert an element to a max-heap that is represented sequentially.


(8)

- 19. (a) Given the following keys $\{4371, 1323, 6173, 4199, 4344, 9679, 1989\}$ and a hash function $h(X) = X \pmod{10}$, construct.
 - (i) separate chaining table
 - (ii) an Open addressing hash table using linear probing
 - (iii) an Open addressing hash table using quadratic probing
 - (iv) an Open addressing hash table with second hash function

$$h2(X) = 7 - (X \mod 7).$$
 (16)

Or

- (b) (i) Illustrate the smart union algorithm with suitable example. (8)
 - (ii) Discuss about the dynamic equivalence problem with example. (8)
- 20. (a) (i) Describe the Dijkstra's algorithm for finding a shortest path in a given graph. (6)
 - (ii) What is a Spanning tree of a graph? What is minimum spanning tree? Execute Prim's algorithm to find the minimum spanning tree of the following graph. (10)

- (b) (i) Write an algorithm to implement Depth-first search? How is Depth-first search differing from Breadth-first search? (10)
 - (ii) Discuss about Euler circuit with suitable example. (6)