|--|

Question Paper Code: 31301

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2016

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL Branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- Write down the Dirichlet's conditions for a function to be expanded as a Fourier series. 1.
- 2. Find the Fourier constant b_n for f(x) = xsinx in $(-\pi, \pi)$.
- 3. State Fourier integral theorem.
- Find the Fourier transform of $f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$ 4.
- Find Z[n]. 5.
- State the convolution theorem of Z-transforms. 6.
- Write the three possible solutions of one dimensional wave equation. 7.
- Classify the PDE $f_{xx} 2f_{xy} = 0$. 8.
- Write the difference scheme for solving the Laplace's equation. 9.
- 10. Write the Bender Schmidt's recurrence relation one dimensional heat equation.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) (i) Find the Fourier series of $f(x) = \begin{cases} 1 & in \\ 2 & in \end{cases} \begin{pmatrix} 0, \pi \\ \pi, 2\pi \end{pmatrix}$

Hence find the sum of the series
$$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots \infty$$
 (8)

(ii) Obtain the Fourier series of the function $f(x) = \begin{cases} 1+x & in \quad 0 < x < \pi \\ x-1 & in \quad -\pi < x < 0 \end{cases}$ (8)

Or

(b) (i) Find the Half range cosine series for y = x in (0, l) and hence show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty.$ (8)

(ii) Compute the first two harmonics of the Fourier series of f(x) given by (8)

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
У	0.8	0.6	0.4	0.7	0.9	1.1	0.8

12. (a) (i) Prove that the function $f(x) = e^{-\frac{x^2}{2}}$ is self reciprocal under Fourier transform. (8) (ii) Find the Fourier sine and cosine transform of $f(x) = e^{-ax}$ (8)

Or

(b) Find Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & |x| \le a \\ 0 & |x| > a \end{cases}$ Using Parseval's identity,

prove that
$$\int_0^\infty \left(\frac{sins-scoss}{s^3}\right)^2 ds = \frac{\pi}{15}.$$
 (16)

13. (a) (i) Find
$$Z\left[\frac{2n+3}{n(n+1)}\right]$$
. (8)

(ii) Find
$$Z^{-1}\left[\frac{Z}{Z^2 + 11Z + 24}\right]$$
. (8)

Or

31301

(b) (i) Find $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$ using convolution theorem. (8)

(ii) Solve the difference equation $y_{n+2} - 3y_{n+1} + 2y_n = 0$, $y_0 = -1$, $y_1 = 2$. (8)

14. (a) A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = k(lx - x^2)$ from which it is released at t = 0. Find the displacement of any point at a distance 'x' at any time 't'. (16)

Or

- (b) A infinitely long rectangular plate with insulated surfaces is 5cm wide. If the temperature at the short edge x = 0 is given u(0, y) = 3y and the two long edges as well as the other short edge are kept at $0^{0}C$, find the steady state temperature distribution in the plate. (16)
- 15. (a) (i) Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to $u(x, 0) = \sin \pi x$; 0 < x < 1; u(0, t) = 0, u(1, t) = 0, compute u upto t=0.1 taking h = 0.2, by using Bender-Schmidt recurrence equation. (8)

(ii) Solve by Crank-Nicolson's method $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$; $0 \le x \le 1$; subject to t > 0, u(x,0) = 0, u(0,t) = 0; u(1,t) = 100t. Compute u for one step with h = 1/4. (8)

Or

(b) (i) Using Leibmann iteration, solve the Laplace's equation $\nabla^2 u = 0$ for the following square mesh with boundary values as shown in below figure (only four iterations).

(ii) Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(0, t) = u(4, t) = u_t (x, 0) = 0$ and u(x, 0) = x(4-x) taking h = 1. (8)