Reg. No. :					
------------	--	--	--	--	--

Question Paper Code: 41264

M.E. DEGREE EXAMINATION, MAY 2017

First Semester

Structural Engineering

14PSE103 – THEORY OF ELASTICITY AND PLASTICITY

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. Hooke's law valid within				
(a) elastic limit	(b) plastic limit			
(c) elastic and plastic limit	(d) all of the above			
2. $G\nabla^2 U + (\lambda + G)\frac{\partial \varepsilon}{\partial x} + Bx = 0$ This equation is called as				
(a) Slope deflection equation	(b) Navier's equation			
(c) Poisson's equation	(d) None of the above			
3. Which method is used to find the deflection of beam and frames				
(a) strain energy method	(b) virtual work method			
(c) castigliano's method	(d) all of the above			
4. Shafts are commonly used to transmit power from				
(a) one point to many points	(b) only one point			
(c) only two points	(d) three points only			
5. The membrane analogy is used to find out				
(a) Analysis of loads	(b) Analysis of moments			
(c) Shear stress and torque	(d) None of the above			

PART - B (5 x 3 = 15 Marks)

- 6. Define the terms body force and surface force.
- 7. What is Airy's stress equation?
- 8. Write down the principle of virtual work method.
- 9. Define virtual work.
- 10. Write down the assumptions of plastic analysis.

PART - C (
$$5 \times 16 = 80 \text{ Marks}$$
)

11. (a) Indicate neatly the stresses on a three dimensional element in rectangular coordinates and derive the equations of equilibrium. (16)

Or

- (b) (i) Explain generalized Hooke's law.
 - (ii) Derive the equations of equilibrium and compatibility conditions in cartesianco-ordinates for a two-dimensional stress field. (10)
- 12. (a) Show that $\varphi = s/4 [xy xy^2/c xy^3/c^2 + ly^2/c + ly^3/c^2]$ is a stress function and identify the problem solved by this stress function when applied to a region included between $y \pm C$ and x = 0 on the side x being positive. Compare this solution for normal stress with that obtained using strength of materials approach. (16)

Or

- (b) Derive Bi-harmonic equation for polar co-ordinates. (16)
- 13. (a) The deflection curve for a pin ended column is represented by a polynomial as $y = ax^4 + bx^3 + cx^2 + dx + e$ Determine the critical load by energy method. (16)

Or

- (b) (i) Explain in detail about membrane analogy. (8)
 - (ii) Distinguish the behavior of solid and hollow sections under torsion. (8)
- 14. (a) Derive the equation for torsion of thin walled open and closed section. (16)

41264

(6)

- (b) A thin walled multiple cell closed section of constant thickness subjected to a twisting moment 'T'. Find the expression for the shear stress and the angle of twist. (16)
- 15. (a) Discuss in detail about the various theories of elastic failure and their applications.

(16)

Or

(b) The state of stress at a point in a material is given by $\sigma_x=35$ MPa, $\sigma_y=70$ MPa, $\sigma_z=140$ MPa, $\tau_{xy} = 70$ MPa, $\tau_{yz} = 105$ MPa, $\tau_{zx} = 35$ MPa. If the yield stress of the material is 240 MPa. Determine whether failure is eminent or not, based on all failure therories E = 200 MPa, $\gamma = 0.3$ (16)