Question Paper Code: 42961

M.E.DEGREE EXAMINATION, MAY 2017

Elective

Structural Engineering

14PSE512 - DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES

(Regulation 2014)

Duration: Threehours

Reg. No. :

Maximum: 100 Marks

Answer ALL Questions

(Use of relevant IS codes and Deign aids are permitted)

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	Failure of bond between steel element and concrete element is								
	(a) Interface failure	(b) Debonding	(c) Shear failure	(d) None					
2.	The partial safety factor for	e partial safety factor for dead load as per Eurocode is							
	(a) 1	(b) 1.15	(c) 1.2	(d) 1.35					
3.	The reduction factor due to column buckling is a function of								
	(a) nondimensional sle	enderness	(b) axial load						
	(c) moment		(d) shear force	:					
4.	A composite box girder section has high								
	(a) Flexural stiffness		(b) Torsional stiffness						
	(c) Compression		(d) None of the above						
5.	The yield stress for HYSD b	ld stress for HYSD based on IS:1139-1966 is							
	(a)415 N/mm ² (b) 425 N/mm ² (c) 345 N/mm ² (d) 260 N/mm ²								
PART - B (5 x $3 = 15$ Marks)									

- 6. Differentiate composite and non-composite section.
- 7. How the composite structures behave under static loading?
- 8. Define shear connection.

- 9. Mention any two advantages of using box girder bridge.
- 10. What is the response of composite structures to seismic effects?

PART - C (5 x
$$16 = 80$$
 Marks)

11. (a) Explain the theory and design principles of composite constructions. (16)

Or

- (b) Discuss the properties of materials used in steel concrete composite construction. (16)
- 12. (a) Design a mid span section of a simply supported composite beam with 10*m* span. The beams are spaced 3*m* c/c to over 18*m*length of hall. Thickness of slab is 120*mm*. The floor is to carry an imposed load of 2.5 *kN/sq.m* and partition load of 1.5 *kN/sq.m*. Assume floor finish load of 0.4 *kN/sq.m*. Assume suitable data if necessary. (16)

Or

- (b) A square composite column of size 400mm consists of a steel section ISHB 250 and steel reinforcement in terms of 4 nos. 16mm diameter bars of Fe415 grade. The column carries a design load of 1600 kN. The height of the column is 3m. Check the adequacy of the section. Assume suitable data if necessary.
- 13 (a) With neat sketch explain the types of shear connectors. (16)

Or

- (b) An ISMB 250 is supporting a slab of thickness 125mm.the steel beam of 5.5m span are spaced at 4m interval. The slab is subjected to a super imposed load of $2 kN/m^2$. Design the suitable connectors between steel beam and RC Slab to ensure full interaction. (16)
- 14. (a) Explain briefly about the behaviour of box girder bridges. (16)

Or

- (b) State and explain the general design principles of composite box girder bridges. (16)
- 15. (a) Explain the characteristic strength of shear connectors. (16)

Or

(b) Explain about any two case studies on steel concrete composite construction in buildings. (16)