Reg. No. :					

(d) PD

Question Paper Code: 41663

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

		Sixth Seme	ester			
]	Instrumentation and Con	ntrol Engineering			
		14UIC603 - PROCES	SS CONTROL			
		(Regulation	2014)			
Du	ration: Three hours	Answer ALL Q		num: 100 Marks		
		PART A - (10 x 1	= 10 Marks)			
1.	A bandwidth oferror equal to 50 perces	•	the controller output	go from 0 to 1 for an		
	(a) 50	(b) 0	(c) 1	(d) 100		
2.	The thermal time const	ant of most simple ther	mal process is			
	(a) $T = \frac{W}{Q}$	$(b) T = \frac{W}{t*Q}$	$(c) T = \frac{W * t}{Q}$	(d) $T = \frac{t}{Q}$		
3.	A process has time co sec per sq ft. Calculate	nstant of $T_1=10$ sec and the proportional sensiti				
	(a) 0.80 sq ft/sec	(b) 0.30 sq ft/sec	(c) 0.91 sq ft/sec	(d) 0.70 sq ft/sec		
4.	Control lag refers to the	e time for the process-	control loop to make n	ecessary adjustments		
	(a) Final Control I(c) Measurement S		(b) Feed back action(d) Controller			
5.	The controller which output and the error is	has a smooth, linear	relationship exists be	tween the controller		

(c) P

(b) PI

(a) I

6.	The is not the error is zero.	ever used alone becaus	e it cannot provide a	a controller output when
	(a) Integral	(b) proportional	(c) Derivative	(d) PID
7.	Astrategy	y is often used in situation	ons where one or mo	re valves may be used
	(a) Ratio	(b) Cascaded	(c) Split range	(d) Feedback
8.	Integral of the absolu	ate value of error (IAE)	has been denoted by	
	(a) $\int_0^\infty e dt$	(b) ∫ <i>e</i> <i>dt</i>	(c) $\int_0^\infty e tdt$	(d) $\int_0^\infty e^2 dt$
9.		balance, assuming cecting changes in the	constant volume, he	eat capacity (c_p) and
	(a) Kinetic and(c) Potential	Potential Energy	(b) Kinetic(d) Heat capacity	
10. a	Distillation remains mixture.	the most common metho	od of separating	components from
	(a) Nuclear	(b) Chemical	(c) Atomic	(d) Physical
		PART - B (5 x 2	2 = 10 Marks)	
11.	Define self-regulatio	n.		
12.	Draw the schematic	diagram of an electronic	PI controller with it	s equation.
13.	Define one quarter d	ecay ratio.		
14.	Differentiate cavitati	on and flashing .		
15.	with a linear depend	· ·	rent corresponding	ed from 140 to 600 rpm to 310 rpm, and (ii) the
		PART - C (5 x 10	6 = 80 Marks)	
16.	(a) (i) Derive the n	nathematical model for t	he temperature proce	ess. (10)
	(ii) Differentiate	e the continuous and bate	ch process.	(6)
		Or		

	(b)	(i) Derive the mathematical model for the pressure process.	(10)
		(ii) Write a short note of self-regulation.	(6)
17.	(a)	Design and realize the P, PI and PID electronic mode controllers.	(16)
		Or	
	(b)	Explain in detail about IAE, ITAE, ISE and one quarter decay ratio.	(16)
18.	(a)	Consider the third order system of having the model $H(s) = \frac{1}{(3s+1)(2s+1)(s+1)}$	using
		Z-H tuning method find the controller gain for the three-term controller.	(16)
		Or	
	(b)	Explain in detail about ratio, selective and split range control with suitable example example.	mple (16)
19.	(a)	Design a proportional-integral controller with a proportional band of 30% are integration gain of $0.1\%/(\%s)$. The 4- to 20-mA input converts to a 0.4- to 2-V si and the output is to be 0–10 V. Calculate values of G_p , G_i , R_1 , R_2 and C respectively.	gnal
		Or	
	(b)	(i) Explain in detail about single and double seated control valve.	(10)
		(ii) Derive the relationship between the parameters C_{ν} and K_{ν} .	(6)
20.	(a)	Describe the process of distillation column and its feature response to reflux characteristics.	ange (16)
		Or	
	(b)	(i) Give a short note on mixing process.	(6)
		(ii) Derive the mathematical model of a CSTR process.	(10)