Reg. No. :

Question Paper Code: 31012

B.E./B.Tech. DEGREE EXAMINATION, MAY 2017

First Semester

Civil Engineering

01UMA102 - ENGINEERING MATHEMATICS - I

(Common to All Branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. State Cayley Hamilton theorem and its uses.
- 2. Prove that, if A is orthogonal then A^T and A^{-1} are orthogonal.
- 3. Find the center and radius of the sphere $3(x^2+y^2+z^2)-2x-3y-4z-22=0$.
- 4. Define the right circular cylinder.
- 5. Find the curvature of the curve $2x^2+2y^2+5x-2y+1=0$.
- 6. Find the radius of curvature for $y = e^x$ at the point where it cuts the Y- axis (or) at x=0.
- 7. Find the envelope of the family of curve $y = mx + \frac{a}{m}$.
- 8. If $(\cos x)^y = (\sin y)^x$ find $\frac{dy}{dx}$.
- 9. Evaluate $\int_0^1 \int_0^{x^2} (x^2 + y^2) dy dx$.
- 10. Evaluate $\int_0^1 \int_0^2 \int_0^e dz \, dy \, dx$.

PART - B (5 X 16 = 80 marks)

11. (a) Find the Eigen values and Eigenvectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. (16)

Or

- (b) Reduce the quadratic form 2xy+2yz+2zx to a canonical form by orthogonal reduction. Also find the rank, index, signature and nature of the quadratic form.
- 12. (a) Find the center, radius and area of the circle $x^2+y^2+z^2-2x-4y-6z-2=0$, x+2y+2z=20. (16)

(b) Find the equation of the right circular cylinder of radius 2 whose axis is the $\lim_{x \to 1} \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}.$ (16)

13. (a) Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (16)

- Or
- (b) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters 'a' and 'b' are connected by the relation a+b = c. (16)
- 14. (a) If u = 2xy, $\vartheta = x^2 y^2$ where if $x = r \cos \theta$, $y = r\sin \theta$ find $\frac{\partial (u, \vartheta)}{\partial (r, \theta)}$. (16) Or
 - (b) Expand $e^x \cos y$ in powers of x and y as far as the terms of third degree using Taylor's expansion. (16)
- 15. (a) Change the order of the integration and hence evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dxdy$. (16)

Or

(b) Find the volume of the tetrahedron bounded by the planes x=0, y=0, z=0 and

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$
 (16)

(16)