Reg. No. :

Question Paper Code: 41335

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Third Semester

Electrical and Electronics Engineering

14UEE305 - SEMICONDUCTOR DEVICES AND CIRCUITS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. The theoretical maximum conversion efficiency of full wave rectifier is

	(a) 81.2%	(b) 76%	(c) 67%	(d) 40.6%
2.	LEDs have response time of the order of			
	(a) 0.1 <i>ns</i>	(b) 1 <i>ns</i>	(c) 100 <i>ns</i>	(d) 1 <i>µs</i>
3.	Calculate beta (β) of a transistor when alpha (α) = 0.98			
	(a) 49	(b) 37	(c) 97	(d) 51
4.	When does a transistor act as a switch?			
	(a) Operated in linear region(c) Operated in saturation region		(b) Operated in cut off region(d) Operated in cut off and saturated region	
5.	For the operation of N channel E-MOSFET it is necessary that gate voltage is			
	(a) highly negative		(b) highly positive	
	(c) low positive		(d) zero	
6.	The dynamic drain resistance of MOSFET is of the order of			

(a) $10 K\Omega$ (b) $500 K\Omega$ (c) $5 M\Omega$ (d) $100 M\Omega$

- 7. The effect of current shunt feedback in an amplifier is
 - (a) Increase the input resistance and decrease the output resistance
 - (b) Increase both input and output resistance
 - (c) Decrease both input and output resistance
 - (d) Decrease the input resistance and increase the output resistance
- 8. Negative feedback in amplifiers results in
 - (a) Reduced voltage gain(b) Increase in signal to noise ratio(c) Reduced bandwidth(d) reduced distortion
- 9. A clamper circuit affects the peak to peak and rms vale of waveform in
 - (a) Increases both(b) Decreases both(c) No change(d) Increases peak to peak value and decreases rms value
- 10. Effect of hysteresis is to
 - (a) Improve noise immunity(b) Increase response time(c) Reduce noise immunity(d) High sensitivity

PART - B (5 x 2 = 10 Marks)

- 11. What is diffusion current in p-n junction diode?
- 12. What is thermal runaway in a transistor?
- 13. What is the advantage of Darlington connection?
- 14. State Bharkausen's criterion for oscillation.
- 15. State the applications of Schmitt trigger.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) Draw the circuit diagram of half wave rectifier and explain its operation with necessary waveforms. Also derive the expression for rectification, efficiency and transformer utilization factor. (16)

Or

- (b) Summarize the operation of Zener diode and its applications. (16)
- 17. (a) Sketch and explain the input, output and transfer characteristics of npn transistor in common emitter mode. (16)

- (b) Discuss in detail the analysis of BJT amplifier using h-parameters.
- 18. (a) Explain with a neat circuit diagram JFET as an amplifier in common source mode. Sketch the V-I characteristics. Also draw its low frequency a.c. equivalent circuit. (16)

Or

- (b) Explain the construction, operation and characteristics of n channel enhancement type MOSFET. (16)
- 19. (a) Explain the different methods of coupling multistage amplifiers. (16)

Or

- (b) Explain R-C phase oscillator with a neat circuit diagram. Also derive the expression for its feedback network.
 (16)
- 20. (a) Explain positive and negative clamper with suitable circuit diagrams and waveforms.

(16)

(16)

Or

(b) Explain with a neat circuit diagram and sketch the waveform of Bistable multivibrator using transistor. (16)