Question Paper Code: 41433

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Third Semester

Electronicsand Communication Engineering

14UEC303 - CIRCUIT THEORY

(Regulation 2014)

Duration: Three hours

Reg. No. :

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. The number of independent loops for a network with n nodes and b branches is

(a) n-1	(b) b-n
(c) b-n+1	(d)independent for the number of nodes

- 2. Ohm's law is given by
 - (a) V = ZI (b) I = GV (c) both (a) and (b) (d) none of these
- 3. Superposition theorem is not applicable to networks containing
 - (a) nonlinear elements(b) dependent voltage source(c) dependent current source(d)transformers
- 4. Maximum power gets transferred to the load when the load impedance is

(a) equal to zero	(b) equal to one
(c) equal to source impedance	(d) none of the above

- 5. What is the Q (Quality factor) of a series circuit that resonates at 6 kHz, has equal reactance of 4 *kilo-ohms* each, and a resistor value of 50 *ohms*?
 - (a) 0.001 (b) 50 (c) 80 (d) 4.0
- 6. The Q-factor in a series R-LC circuit at resonance is

(a)
$$\frac{1}{R}\sqrt{\frac{C}{L}}$$
 (b) $\frac{1}{L}\sqrt{\frac{C}{R}}$ (c) $\frac{1}{R}\sqrt{\frac{L}{C}}$ (d) $\frac{1}{R^2}\sqrt{\frac{C}{L}}$

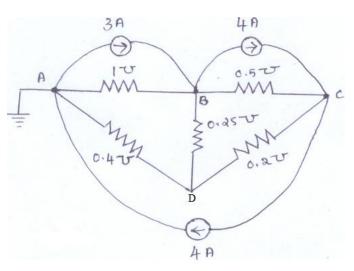
- 7. Self-inductance of a magnetic coil is proportional to
 - (a) N (b) 1/N (c) N^2 (d) $1/N^2$
- 8. In two wattmeter method of power measurement, when the power factor of load is zero leading or lagging the two wattmeter will give_____ reading.

(a) Zero	(b) equal
(c) equal and opposite	(d) not equal

9. A two - port network is symmetrical if

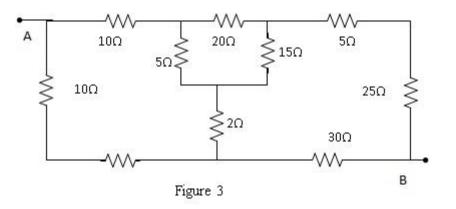
(a) $Z_{11}Z_{22} - Z_{12}Z_{21} = 1$	(b) <i>AD</i> - <i>BC</i> = 1
(c) $h_{11}h_{22} - h_{12}Z_{21} = 1$	(d) $Y_{11}Y_{22} - Y_{12}Y_{21} = 1$

- 10. For a two port network to be reciprocal
 - (a) $Z_{11}=Z_{22}$ (b) $y_{21}=y_{22}$ (c) $h_{21}=-h_{12}$ (d) AD-BC=0 PART - B (5 x 2 = 10 Marks)

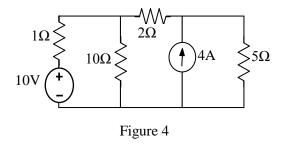

11. State Kirchhoff's laws for electric circuits.

- 12. Write the expression for Millman's equivalent source of *n* number of parallel connected voltage sources.
- 13. Give the expressions for series and parallel resonance frequency.
- 14. Write the symmetrical components of three phase system.
- 15. Write the expression of Y parameters in terms of ABCD parameters.

PART - C (5 x
$$16 = 80$$
 Marks)

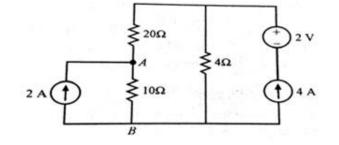

16. (a) Find V_{BD} by nodal analysis for the circuit shown in the figure.

(16)



(b) Find the equivalent resistance between the terminals *A* and *B* for the circuit shown in Figure 3. (16)

Or



17. (a) Determine the current in the 10- Ω resistor for the circuit shown in Figure 4 by using superposition theorem. (16)

Or

(b) Determine V_{AB} using superposition theorem in the circuit shown in figure. (16)

18. (a) A RLC series circuit consists of $R = 16 \Omega$, L = 5 mH and $C = 2 \mu F$. Calculate the quality factor, bandwidth and half-power frequencies. (16)

- (b) Obtain the resonant frequency, Q-factor, band width and the voltage across the capacitor at resonance for the series RLC circuit having $R = 7.5\Omega$, $L = 6\mu H$ and C = 40pF, with a supply voltage of 0.5 *volts*. (16)
- 19. (a) Two coils connected in series have an equivalent inductance of 0.8 H when connected in aiding and an equivalent inductance of 0.4 H when connected in opposing. Determine the mutual inductance. Calculate the self-inductance of the coils, by taking k = 0.55.

(16)

Or

- (b) Three pure resistances value 200 Ω each are connected to a 3 phase, 440 V, 50 H_z supply. Determine the line, phase values of current, voltage and active power in both star and delta connections. (16)
- 20. (a) The current I_1 and I_2 at the input port and output port respectively of a two port network are given by

 $I_1 = 6V_1 - V_2$ and $I_2 = -V_1 + 2V_2$

Find the equivalent pie-network and the input impedance when a load of $(4+j7) \Omega$ is connected across the output port. (16)

Or

(b) Design a low pass filter having cut – off frequency of 2 *KHz*, to operate with a terminal load resistance of 500Ω . (16)