Reg. No.:					

Question Paper Code: 41403

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fifth Semester

Electrical and Electronics Engineering

14UEC523 - COMMUNICATION ENGINEERING

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

			\mathcal{E}		
		(Regulat	ion 2014)		
Dι	uration: Three hours			Maximum:	100 Marks
		Answer AL	L Questions		
		PART A - (10 x	x 1 = 10 Marks		
1.	The bandwidth of a D	SBSC signal is			
	(a) fm	(b) 2fm	(c) $fm + fc$	(d)	2(fm+fc)
2.	The antenna current o 8.93A when the carr modulation		•		
	(a) 70.1	(b) 79.1	(c) 71	(d) 17	7
3.	Frequency Shift Keyir	ng is used mostly in			
	(a) telegraphy transmission	(b) telephony	(c) satellite comm	unication	(d) radio
4.	Quantizing error occur	rs in			

(c) TDM

(c) $S = YH^T$

(d) FDM

(d) $S = HY^T$

(a) PAM (b) PCM

(a) $S = XH^T$

5. In hamming codes, the syndrome is given by

(b) $H = SY^T$

6.	The entropy of a source $P_i = 1/64$ is	e with a symbol set cor	ntaining 64 symbols eac	ch with a probability
	(a) 3 bits/symbol	(b) 4 bits/symbol	(c) 8 bits/symbol	(d) 6 bits/symbol
7.	Direct Sequence Spread	d Spectrum is also calle	ed as	
	(a) TDMA	(b) FDMA	(c) CDMA	(d) SDMA
8.	Frequency Division Mu	ultiple Access method l	nas	
	(a) Guard times	(b) Guard bands	(c) Both a & b	(d) None of these
9.	The angle subtended by	y earth at geostationary	communication satelli	te is
	(a) 51.4°	(b) 120°	(c) 17.34°	(d) 60°
10.	For global communicat	tion, the number of sate	ellites needed is	
	(a) 1	(b) 3	(c) 10	(d) 5
		PART - B (5 x 2 =	= 10 Marks)	
11.	State the Carson's rule.			
12.	Define bit rate and bau	d rate.		
13.	Compare NRZ and RZ			
14.	List the different types	of handoffs.		
15.	Define numerical apert	ure.		
		PART - C (5 x 16 :	= 80 Marks)	
16.	(a) Explain the operate with Tuned Radio	•	one receiver and comp	eare its performance (16)
		Or		
	(b) Using suitable Ma sidebands. Also de frequency spectrum	educe an expression for	ow that FM modulation or the frequency modu	•
17.	(a) Explain Delta mo demerits of DM.	dulation and its deme	erits. Suggest a metho	od to overcome the (16)

(b)	Explain	QPSK	transmitter	and	receiver	with	block	diagram.	Also	draw	the
	constella	tion and	l phasor diag	ram o	of QPSK.						(16)

18. (a) A database management system has following alphabet with probability of occurrence as shown below. Generate the Huffman code with minimum code variance. Determine the code variance and code efficiency. (16)

Symbol	S_0	S_1	S_2	S_3	S_4	S_5	S_6
Probability	0.12	0.062	0.2	0.062	0.12	0.12	0.2
	5	5	5	5	5	5	5

Or

(b) Briefly discuss on various error control codes and explain in detail with one example for convolution code. (16)

19. (a) With neat block diagram explain the frequency division multiple access technique.

Discuss its application in communication. (16)

Or

- (b) Explain CDMA with necessary block diagrams. (16)
- 20. (a) (i) Define and explain SCADA. (8)
 - (ii) Develop the concept of satellite link design. (8)

Or

(b) Explain Optical Fiber Communication link with a neat block diagram. List the advantages and disadvantages of Optical Fiber Communication. (16)

3