Reg. No. :					
------------	--	--	--	--	--

Question Paper Code: 50232

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Third Semester

Computer Science and Engineering

15UCS302 - DATA STRUCTURES

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. The depth of complete binary tree is given by

(a) $Dn = n \log 2n$	(b) $Dn = n \log 2n + 1$
(c) $Dn = log2n$	(d) $Dn = log 2n + l$

- 2. Leaves of the _____trees are at the same level?
 - (a) B (b) B+ (c) B- (d) Binary
- 3. The minimum number of elements in a heap of height h is

(a) 2^{h+1} (b) 2^h (c) $2^h - 1$ (d) 2^{h-1}

- 4. A technique for direct search is
 - (a) Binary Search (b) Linear Search (c) Tree Search (d) Hashing
- 5. How many nested loops are present in Prim's Algorithm (a) 1 (b) 2 (c) 3 (d) 4

PART - B (5 x 3 = 15 Marks)

6. How many null nodes will a binary tree with 20 nodes have.

- 7. Define red black tree.
- 8. Illustrate the decrease key operation in a heap tree.
- 9. What is Rehashing?
- 10. What are the kinds of graphs?

PART - C (5 x 16 = 80 Marks)

11. (a) Explain binary search and write a function to search an element from a list of n elements. (16)

Or

	(b) Explain threaded binary tre	ee in detail.	(16)
12.	(a) Explain in detail about AV	L TREES.	(16)

Or

- (b) Write binary search algorithm and trace to search element 91 in following list:
 13 30 62 73 81 88 91. (16)
- 13. (a) Explain insertion and deletion operations in heap.

Or

- (b) Give a mathematical expression that describes the heap property for a binary tree. (16)
- 14. (a) Define Hashing. How do collisions happen during hashing? Explain the different techniques resolving of collision. (16)

Or

- (b) Explain rehashing, extendible hashing and its applications in detail. (16)
- 15. (a) Explain in detail the Dijkstra's single source shortest path problem with example.

(16)

(16)

Or

(b) Obtain minimum spanning tree by Kruskal's algorithm. (16)