Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 41022

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Second Semester

Civil Engineering

14UMA202 - ENGINEERING MATHEMATICS - II

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	The roots of $(D^2+2)y$ at	re		
	(a) ±2	(b) ±2 <i>i</i>	(c) $\pm i\sqrt{2}$	(d) √2
2.	The particular integral	of $(4D^2 - 4D + 1)y =$	4 is	
	(a) -4	(b) 4	(c) -2	(d) -3
3.	The gradient of a scala	r function is defined a	as	
	(a) ∇/Ø	(b) $\nabla * \emptyset$	(c) Ø∇	(d) $\nabla Ø$
4.	If \emptyset is constant, then $\nabla \emptyset$	ð is		
	(a) $2\vec{i}+\vec{j}$	(b) -1	(c) 0	(d) 1
5.	The derivative of $f(z)$ a	t z_0 is		
	(a) <i>l</i>	(b) f(z)	(c) $f(z_0)$	(d) $f'(z_0)$
6.	The invariant points of	$w = \frac{2z-5}{z+4}$ are		
	(a) $z = 2, -1$	(b) $z = -1 \pm 2i$	(c) $z = 0,1$	(d) $z = 2 \pm 3i$

- 7. The singular point of $f(z) = \frac{1}{z}$ is
 - (a) z = 2 (b) z = 1 (c) z = 3 (d) z = 0
- 8. In $f(z) = \frac{z}{(z-1)^3}$ the point z=1 is a pole of order
 - (a) 1 (b) 3 (c) 2
- 9. The value of $L[t^3]$ is

(a)
$$\frac{3}{s^3}$$
 (b) $\frac{6}{s^3}$ (c) $\frac{6}{s^4}$ (d) $\frac{3}{s^4}$

10. Laplace transforms is an _____ transform.

(a) Discrete	(b) Discrete time
(c) Data independent	(d) Integral

PART - B (
$$5 \times 2 = 10 \text{ Marks}$$
)

(d) 0

- 11. Solve $(D^4 2D^3 + D^2)y = 0$.
- 12. Find *grad* ϕ at (1,0,2) where $\phi = x^2y + 2xz^2 8$.
- 13. Find the values of a & b such that the function $f(z) = x^2 + ay^2 2xy + i(bx^2 y^2 + 2xy)$ is analytic.
- 14. Find the Taylor's series for sinz about $z = \frac{\pi}{4}$.
- 15. Find the Laplace Transform of $e^{-5t}t^2$.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) (i) Solve the equation
$$(1+2x)^2 y'' - 6(1+2x)y' + 16y = 8(1+2x)^2$$
. (8)

(ii) Solve the equation $(D^2 + 4D + 3)y = e^{-x}sinx.$ (8)

Or

- (b) (i) Solve the equation $(x^2D^2 2xD + 4)y = x^2 + 2logx.$ (8)
 - (ii) Solve the equation by Method of variation of parameter $(D^2 + a^2)y = \sec ax$. (8)

17. (a) Verify Gauss divergence theorem for $\vec{F} = 4xz\vec{\iota} - y^2\vec{j} + yz\vec{k}$ over the cube $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1.$ (16)

Or

- (b) Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2dy$ where *C* is the boundary of the area between $y = x^2$ and y = x. (16)
- 18. (a) Find the Bilinear transformation that maps $z=\infty$, I, 0 in to the points $w=0, -i, \infty$ respectively. Also find its fixed Points. (16)

Or

(b) Find the image of |z - 2i| = 2 under the mapping $w = \frac{1}{z}$. (16)

19. (a) Evaluate
$$\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$$
 by contour integration. (16)

Or

(b) Evaluate
$$\int_0^\infty \frac{x^2}{(x^2+a^2)(x^2+b^2)} dx, a > 0, b > 0.$$
 (16)

20. (a) (i) Find the Laplace Transform of the square-wave function of period 'a' given by

$$f(t) = \begin{cases} 1, & 0 < t < \frac{a}{2} \\ -1, & \frac{a}{2} < t < a \end{cases}$$
(8)

(ii) Using Convolution theorem evaluate $L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$. (8)

Or

(b) (i) Solve $y'' + 4y' + 4y = e^{-t}$, y(0) = 0 and y'(0) = 0 using Laplace transform. (8)

(ii) Compute y(1,1) by using Runge-Kutta method of fourth order, given $\frac{dy}{dx} = y^2 + xy, y(1) = 1.$ (8)

#