Question Paper Code: 50042

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

(Common to Electrical and Electronics Engineering, Electronics and Instrumentation Engineering and Chemical Engineering)

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. Newton's formula converges if

(a) $ f'(x).f''(x) < {f(x)}^2$	(b) $ f(x).f''(x) < \{f'(x)\}^2$
(c) $ f(x), f'(x) < \{f'(x)\}^2$	(d) None of these

- 2. In Gauss Elimination method, the coefficient matrix is transformed to which form?
 - (a) Lower Triangular matrix(b) Upper Triangular matrix(c) Diagonal matrix(d) Identity matrix
- 3. Find $\Delta(\log x)$

(a) log x	(b) log x+1	(c) $\log\left(\frac{x+1}{x}\right)$	(d) $\log\left(\frac{x}{x+1}\right)$

- 4. Given $y_0 = 2$, $y_1 = 4$, $y_2 = 8$, $y_4 = 32$, find y_3 (a) 1 (b) 16 (c) 64 (d) 128
- 5. What is the order of the error in Simpson's formula?

(a) 2 (b) 3 (c) 4 (d) 5

Maximum: 100 Marks

- 6. Using Trapezoidal rule evaluate $\int_0^{\pi} \sin x \, dx$ by dividing the range into 6 equal parts (a) 0.2312 (b) 0.4332 (c) 0.6514 (d) 0.8614
- 7. By Taylors series method, Find y (1.1). Given y'=x + y, y (1) = 0.
 - (a) 0.1103 (b) 0.3214 (c) 0.5413 (d) 0.6213
- 8. The error term in Adam-Bashforth predictor formula is

(a)
$$\frac{14h}{45}\Delta^2 y_0$$
 (b) $\frac{14h}{45}\Delta^4 y_0$ (c) $\frac{-19h}{720}\Delta^4 f$ (d) $\frac{251h}{720}\Delta^5 f$

9. The PDE $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ is called as

- (a) Heat equation(b) Wave equation(c) Laplace equation(d) Poisson equation
- 10. In solving equation $u_t = \alpha^2 u_{xx}$ by Crank-Nicholson method to simplify method we take $\frac{(\Delta x)^2}{\alpha^2 k}$ as
 - (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) 2

PART - B (5 x
$$2 = 10$$
 Marks)

- 11. Find an iterative formula to find \sqrt{N} , where N is a positive number.
- 12. Write divided difference table for:

Х	0	1	2	4
Y	443	384	397	467

- 13. Why Simpson's one third rule is called a closed formula?
- 14. Solve: $\frac{dy}{dx} = 1 y$, y(0) = 0 for x = 0.1 by Euler's method.
- 15. What is the classification of $f_{xx} + 2f_{xy} + f_{yy} = 0$?

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Compute the real root of $x log_{10}x = 1.2$ correct to three decimal places using Newton-Raphson Method. (8)
 - (ii) Solve the following system of equations by Gauss-Elimination method. 10x - 2y + 3z = 2; 2x + 10y - 5z = -33; 3x - 4y + 10z = 41. (8)

50042

(b) (i) Using power method find Eigen value and Eigen vector of

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
(8)

(ii) Solve the system of equations: x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y + 2z = 72 by Gauss siedel method. (8)

17. (a) (i) The following table gives certain corresponding values of x and $log_{10}x$. Compute the value of $log_{10}323.5$, by using Lagrange's interpolation formula. (8)

X	321.0	322.8	324.2	325.0	
log ₁₀ x	2.50651	2.50893	2.51081	2.51188	

(ii) Find the cubic polynomial from the following table using Newton's divided difference formula and hence find f(4).(8)

х	0	1	2	5
f(x)	2	3	12	147

Or

(b) (i) The following values of x and y are given :

Х	1	2	3	4
Y	1	2	5	11

Find the cubic spline and evaluate y(1.5).

(8)

(ii) Find the value of $e^{1.85}$, given $e^{1.7} = 5.4739$, $e^{1.8} = 6.0496$, $e^{1.9} = 6.6859$, $e^{2.0} = 7.3891$, $e^{2.1} = 8.1662$, $e^{2.2} = 9.0250$, $e^{2.3} = 9.9742$. (8)

18. (a) (i) From the given data, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1. (8)

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
f(x)	7.989	8.403	8.781	9.129	9.451	9.750	10.031

50042

(ii) Evaluate: $\int_0^1 \frac{dx}{1+x}$ correct to three decimal places using Romberg's method. Hence find the value of *log2*. (8)

Or

(b) (i) Evaluate:
$$\int_{1}^{2} \frac{dx}{1+x^{3}}$$
 using Gauss three point formula. (8)
(ii) Evaluate: $\int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x^{2}+y^{2}}$ using Trapezoidal rule by taking h=0.2 and k=0.25. (8)

19. (a) Using Runge-Kutta method of order four, find y for x=0.1, 0.2, 0.3; given that $\frac{dy}{dx} = xy + y^2, y(0) = 1$ and also find the solution at x=0.4 using Milne's method.
(16)

Or

(b) (i) Given: $\frac{dy}{dx} = x^2 (1+y)$,

y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate y(1.4)by Adam's-Bashforth method. (8)

- (ii) Find the Taylor series solution of y(0.1) given that $\frac{dy}{dx} + y^2 = e^x$, y(0) = 1. Compute using first five terms. (8)
- 20. (a) Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ given u(0,t) = u(5,t) = 0, $u(x,0) = x^2(25 x^2)$ find u in the range taking h=1 and upto 3 seconds using Bender-Schmidt recurrence equation. (16)

Or

(b) Solve the Poisson's equation Δ²u = 10(x² + y² + 10) over the square mesh with sides x=0, y=0, x=3, y=3 with u=0 on the boundary and mesh length 1 unit. (16)