		_		
	Que	stion Paper Code	e: 41042	
	B.E. / B	.Tech. DEGREE EXA	AMINATION, MAY 2017	7
		Fourth Se	emester	
		Civil Engi	neering	
	1	4UMA422 - NUMEF	RICAL METHODS	
	((Common to EEE, EIE	and ICE Branches)	
		(Regulatio	n 2014)	
	Duration: Three hours		Ma	ximum: 100 Marks
		Answer ALL	Questions	
		PART A - (10 x	1 = 10 Marks)	
1.	Bisection method is also ca	lled		
	(a) Newton Raphson(c) Secant method	method	(b) False position method(d) BOLZANO's method	
2.			(c) $ \emptyset'(x) \le 1$	$(d) \emptyset'(x) \ge 1$
3.	As soon as a new value of equations this method is ca	•		
4	(a) Gauss jordan		(c) Gauss jacobi	(d) Relaxation
4.	If the eigen values of A are (a) 3	-5,1,2 then dominant (b) -3	(c) 2	(d) 1
5.	Forward interpolation form (a) 0	-	late value of y for (c) 0	(d) $-\alpha$
6.	The n^{th} divided difference (a) Zero	of a polynomial of do	egree n is (c) a variable	(d) none of these
7.	1		(c) $y' < 0, y'' = 0$	(d) $y' > 0, y'' < 0$

Reg. No.:

9.	The method of gro	up averages is based	on the assumption th	nat the sum of the residual	s is
	(a) 0	(b) 1	(c) 2	(d) 3	
10.	If $y = 2x + 5$ is $\sum Y = 120$, the $\sum X$	_	airs of values (x, y)	by the method of least	squares and
	(a) 35	(b) 40	(c) 45	(d) 30	
		PART	- B (5 x $2 = 10$ Mark	s)	
11.	Find an iterative formula.	formula for finding	\sqrt{N} where N is a	real number, using Newt	on-Raphson
12.	Compare Gaussian	elimination & Gaus	s-Jordan methods in	solving system $[A]{X} =$	$\{B\}.$
13.	Using Lagrange's	interpolation, find the	e polynomial through	(0,0)(1,1) and $(2,2)$.	
14.	State the formula f	for three Point Gaussi	ian-quadrature.		
15.	By method of least	t squares find the nor	mal equations to fit s	straight line.	
		PART -	$C (5 \times 16 = 80 \text{ Mark})$	(s)	
16.		eal root of the equational places.	$on x^3 - 2x - 5 = 0$	using false position metho	od correct to (8)
	(ii) Find the ro	oot of the equation co	osx = 3x - 1 using i	teration method.	(8)
			Or		
	(b) (i) Using NR	M to solve $X log_{10}X$	Y = 12.34 start with	$x_0=10.$	(8)
	(ii) Find the p	ositive root of $x^3 - x^3$	$\alpha = 1$ using bisection	method.	(8)
17.	•	Gauss-Seidal method			
	27x + 6y	-z = 85, x + y + 5	54z = 110,6x + 15y	z + 2z = 72.	(8)
	(ii) Using Gau	ıss-Jordan method, fi	nd the inverse of the	$ \text{matrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}. $	(8)
			Or		

The number of equal sub intervals required to apply both Simpson's 1/3 rule and Simpson's 3/8

(b) Any multiple of 2

(d) Any multiple of 3

rule to evaluate an integral is

(c) Any multiple of 6

(a) Any number

- (b) (i) Find by power method, the largest eigen value and the eigen vector of the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & 4 \end{bmatrix}$ (16)
- 18. (a) From the following table find f(x) and hence f(15) using Newton's interpolation formula:

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

Or

(b) The population of a town is as follows:

Year	X	1941	1951	1961	1971	1981	1991
Population in Lakhs	у	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

(16)

(16)

(16)

19. (a) Evaluate $\int_0^1 \int_0^1 \frac{dx \, dy}{x+y+1}$ by using Trapezoidal rule taking h = 0.5 and k = 0.25. (16)

Or

- (b) Use Romberg's rule, evaluate $\int_0^1 \frac{dx}{1+x}$ correct to three decimal places by taking h = 0.5, 0.25 and 0.125. (16)
- 20. (a) By the method of least squares, find the best fitting straight line to the data given below.

x	5	10	15	20	25
у	15	19	23	26	30

Or

(b) From the table given below, find the best values of 'a' and 'b' in the law $y = ae^{bx}$ by the method of least squares. (16)

x	0	5	8	12	20
у	3	1.5	1	0.55	0.18