Reg. No. :

Question Paper Code: 31042

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fourth Semester

Civil Engineering

01UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and ICE)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. Find an iterative formula to find \sqrt{N} by Newton Raphson method?
- 2. What is the order of convergence of method of false position?
- 3. Solve x + y = 2, 2x + 3y = 5 by Gauss Elimination method.
- 4. Find the inverse of the coefficient matrix by Gauss-Jordan method. 3x y = 5 and x + y = -1.
- 5. State Newton's backward interpolation formula.
- 6. Write the divided difference with arguments a, b, c, if $f(x) = \frac{1}{x^2}$.
- 7. Why is Trapezoidal rule so called?
- 8. Using two point Gaussian quadrature formula, evaluate $\int_{-1}^{1} (3x^2 + 5x^4) dx$.
- 9. State the principle of least squares.
- 10. Write the observation equations when the equation y = ax + b is fit by the method of moments.

- 11. (a) (i) Find a positive root of $2x \log_{10} x 6 = 0$ using Newton Raphson method. (8)
 - (ii) Find a positive root of $x \cos x = 0$ by Bisection method. (8)

Or

- (b) (i) Solve the equation $x \tan x = -1$ by method of false position starting with a = 2.5 and b = 3 correct to 3 decimal places. (8)
 - (ii) Solve the equation $x^3 + x^2 1 = 0$ for positive root by iteration method. (8)
- 12. (a) (i) Apply Gauss-Seidel method to solve the system of equations:

$$30x - 2y + 3z = 75$$
, $2x + 2y + 18z = 30$ and $x + 17y - 2z = 48$ (8)

(ii) Determine the largest eigen value and the corresponding eigenvector
of the matrix
$$\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$$
. (8)

Or

(b) Find the eigen values and eigen vectors of the matrix by Jacobi method.

$$\begin{pmatrix} 1 & \sqrt{2} & 2\\ \sqrt{2} & 3 & \sqrt{2}\\ 2 & \sqrt{2} & 1 \end{pmatrix}.$$
 (16)

13. (a) (i) Find the number of students who obtain marks between 40 and 45 using Newton's formula. (8)

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

(ii) Estimate x when y = 20 from the following table using Lagrange's method. (8)

X	1	2	3	4
У	1	8	27	64

(b) Using cubic spline to the following data find Y(1.5).

x	1	2	3	4
Y	1	2	5	11

14. (a) (i) Calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 4 from the data given below by Newton's backward differentiation formula. (8)

Х	1.5	2.0	2.5	3.0	3.5	4.0
Y	3.37	7.0	13.625	24.0	38.875	59.0

(ii) By dividing the range into 10 equal parts, evaluate $\int_0^{\pi} \sin x \, dx$ using Simpson's 1/3 rule. (8)

Or

- (b) Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x^{2}+y^{2}}$ h=0.2, k=0.25 by both trapezoidal and Simpson's rule. (16)
- 15. (a) (i) Find a straight line fit of the form y = a + bx, by the method of group averages for the following data. (8)

Х	0	5	10	15	20	25
Y	12	15	17	22	24	30

(ii) From the table given below, find the best values of a and b in the law $y = ae^{bx}$ by the method of least squares. (8)

	1	2	3	4
Y	60	30	20	15

- Or
- (b) (i) By the method of least squares, find the best fitting straight line to the data given below.(8)

X	5	10	15	20	25
Y	15	19	23	26	30

(16)

(ii) By the method of moments, fit a straight line to the data.

X	1	2	3	4
Y	1.7	1.8	2.3	3.2