Reg. No. :

Question Paper Code: 50944

B.E. / B.Tech. DEGREE EXAMINATION, MAY 2017

Fourth Semester

Chemical Engineering

15UCH404 - PHYSICAL CHEMISTRY

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. The $t^{1/2}$ of a reaction is doubled as the initial concentration of reactant is doubled. The order of the reaction is
 - (a) 1 (b) 2 (c) 3 (d) 1/2
- 2. If $E_a > E_b$, (where E_a and E_b are the energies of activation for forward and reverse reactions respectively), then the reaction is

(a) exothermic	(b) endothermic	
(c) chain reaction	(d) explosive	

- 3. The units for molar conductance are
 - (a) Sm^2mol^{-1} (b) m^2S^{-1} (c) $Sm^{-1}mol^{-1}$ (d) none of these
- 4. The distance travelled by an ion per second under a potential gradient of 1 volt per metre is
 - (a) 0 (b) 2 (c) 3 (d) none of these
- 5. The triple point is the point where
 - (a) three components are in equilibrium
 - (b) the number of degrees of freedom is 3
 - (c) the number of degrees of freedom is zero
 - (d) none of these

6. The condensed phase rule is

(a) $F' = C - P + 2$	(b) F' =C-P+1
(c) $F' = C + P + 3$	(d) F' =C-P-1

7. The curve showing effect of temperature on extent of adsorption at a given pressure is called

(a) physical adsorption	(b) adsorption
(c) Chemical adsorption	(d) None of these

8. In the steady state approximation, if I is the intermediate formed, then

(a) [I] =0 (b) [I] $\neq 0$ (c) [I]/dt =0 (d) none of these

9. For colloidal solutions, the particles generally lie in the size range of

(a) nm (b) cm (c) mm (d) m

10. Which of the following is not an example of colloid?

(a) Milk	(b) Paint	(c) Blood	(d) Isotonic solution
----------	-----------	-----------	-----------------------

PART - B (5 x 2 = 10 Marks)

- 11. How does threshold energy differ from activation energy?
- 12. Specific conductance decreases with dilution whereas equivalent conductance increases-Why?
- 13. State condense phase rule.
- 14. What are homogeneous and heterogeneous catalysts? Give example.
- 15. Mention how a hydrophilic colloid can stabilize with a hydrophobic colloid.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) Discuss the kinetics of parallel and opposing reactions. (16)

Or

- (b) Illustrate the influence of ionic strength and the nature of the solvent on rates of ionic reactions. (16)
- 17. (a) State Kohlrausch's law of independent migration. Discuss its applications in detail. (16)

2

50944

- (b) (i) Derive Ostwalds dilution law for weak electrolytes.
 - (ii) The molar conductance s at infinite dilution of HCl , NaCl and NaZ (sodium crotonate) are 425 x 10^{-4} , 125 x 10^{-4} and 80 x 10^{-4} S m²mol⁻¹ respectively. The specific conductance of 0.001 M aqueous solution of crotonic acid (HZ) is 3.8 x 10^{-3} S m⁻¹. Calculate the degree of dissociation and the dissociation constant of the acid. (8)
- 18. (a) (i) Write the mathematical form of Gibbs phase rule equation and explain the terms involved in it with suitable examples. (10)
 - (ii) Define the term cooling curves and explain the phase diagram of two component system.

Or

- (b) (i) State the Distribution law. Under what conditions is the law valid? How is the law derived from thermodynamic considerations. (10)
 - (ii) Draw and explain the water system. (6)
- 19. (a) (i) With postulates, derive Langmuir adsorption isotherm equation. (10)
 - (ii) Define adsorption isotherm and show the different types of adsorption isotherms with the help of diagrams.(6)

Or

- (b) (i) Derive Michaelis-Menten equation.(10)(ii) Write the characteristics of enzyme catalysis.(6)
- 20. (a) Discuss any three methods for the preparation of colloidal solutions. (16)

Or

(b) Discuss briefly the kinetics of addition and condensation polymerization. (16)

(8)

##