

	 	 	 _			 	· · · · · · · · · · · · · · · · · · ·	 	
Reg. No.:				·					

Question Paper Code: 21522

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Civil Engineering

MA 2211/MA 31/MA 1201 A/CK 201/10177 MA 301/080100008/080210001 — TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all branches)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. State the Dirichlet's conditions for Fourier series.
- 2. What is meant by Harmonic Analysis?
- 3. Find the Fourier Sine Transform of e^{-3x} .
- 4. If $\Im\{f(x)\}=F(s)$, prove that $\Im\{f(ax)\}=\frac{1}{a}\cdot F\left(\frac{s}{a}\right)$.
- 5. Form the PDE from $(x-a)^2 + (y-b)^2 + z^2 = r^2$.
- 6. Find the complete integral of p+q=pq.
- 7. In the one dimensional heat equation $u_t = c^2 \cdot u_{xx}$, what is c^2 ?
- 8. Write down the two dimensional heat equation both in transient and steady states.
- 9. Find Z(n).
- 10. Obtain $Z^{-1}\left[\frac{z}{(z+1)(z+2)}\right]$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Find the Fourier series of x^2 in $(-\pi, \pi)$ and hence deduce that $1 \quad 1 \quad 1 \quad \pi^4$

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \frac{\pi^*}{90} \,. \tag{8}$$

(ii) Obtain the Fourier cosine series of $f(x) = \begin{cases} kx, & 0 < x < \frac{1}{2} \\ k(l-x), & \frac{1}{2} < x < l \end{cases}$ (8)

- Find the complex form of Fourier series of $\cos ax$ in $(-\pi, \pi)$, where (b)"a" is not an integer.
 - Obtain the Fourier cosine series of $(x-1)^2$, 0 < x < 1 and hence show

that
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$
. (8)

Find the Fourier transform of $f(x) = \begin{cases} 1, |x| < a \\ 0, |x| > a \end{cases}$ and hence find

$$\int_{0}^{\infty} \frac{\sin x}{x} dx. \tag{8}$$

Verify the convolution theorem under Fourier Transform, for $f(x)=g(x)=e^{-x^2}.$ (8)

- Obtain the Fourier Transform of $e^{-x^2/2}$. (8)
 - (ii) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2}$ using Parseval's identity. (8)
- (a) (i) Solve: $x(y^2-z^2)p + y(z^2-x^2)q = z(x^2-y^2)$. (ii) Solve: $(D^2+DD'-6D'^2)z = y \cdot \cos x$. (8)
 - (8)

(b) (i) Solve:
$$z = px + qy + \sqrt{p^2 + q^2 + 1}$$
. (8)

(ii) Solve:
$$(D^3 - 7DD'^2 - 6D'^3)z = \sin(2x + y)$$
. (8)

A tightly stretched string between the fixed end points x = 0 and x = l is 14. (a) initially at rest in its equilibrium position. If each of its points is given a velocity kx(l-x), find the displacement y(x,t) of the string.

- An infinitely long rectangular plate is of width 10 cm. The temperature (b) along the short edge y = 0 is given by
 - $u = \begin{cases} 20x, & 0 < x < 5 \\ 20(10-x), 5 < x < 10 \end{cases}$ If all the other edges are kept at zero temperature, find the steady state temperature at any point on it.
- (i) Find $Z(\cos n\theta)$ and hence deduce $Z\Big(\cos\frac{n\pi}{2}\Big)$. (8)
 - Using Z-transform solve: $y_{n+2} 3y_{n+1} 10y_n = 0$, $y_0 = 1$ and $y_1 = 0$. (8)

- State and prove the second shifting property of Z transform. (6)(b)
 - Using convolution theorem, find $Z^{-1}\left| \frac{z^2}{(z-a)(z-b)} \right|$.