

ŗ	 	,		 , 	 	 	
Reg. No.:							

Question Paper Code: 21217

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Seventh Semester

Civil Engineering

CE 2403 / CE 73 – BASICS OF DYNAMICS AND ASEISMIC DESIGN

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

(IS 1893 and IS 13920 codes are permitted)

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. State D' Alembert's principle.
- 2. Differentiate free and forced vibration.
- 3. What is meant by coupled and uncoupled equations of motion?
- 4. What is meant by mode shape?
- 5. What is epicentre?
- 6. What are the factors influencing ground motion?
- 7. What is meant by liquefaction of soil?
- 8. What is meant by zero period acceleration?
- 9. What is the concept of base isolation?
- 10. What do you mean by seismic dampers?

PART B
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) A mass of one kg is suspended by a spring having a stiffness of 600 N/m. The mass is displaced downward from its equilibrium position by a distance of 0.01m. Find
 - (i) Equation of motion of the system
 - (ii) Natural frequency of the system
 - (iii) The response of the system as a function of time
 - (iv) Total energy of the system.

 (4×4)

Or

- (b) An SDOF system consists of a mass of 20 kg, a spring stiffness 2200 N/m and a dashpot with a damping coefficient of 60 N-s/m is subjected to a harmonic excitation of F = 200 Sin5t N. Write the complete solution of the equation of motion.
- 12. (a) Determine the natural frequencies and modes of the system shown in fig.Q 12 (a).

Fig. Q 12 (a)

Or

(b) Determine the natural frequencies and modes of the system shown in Fig. Q 12 (b).

Fig. Q 12 (b)

•					
		-			
	13.	(a)	(i)	Elastic rebound theory – Explain in detail.	(6)
		<i>4.</i>	(ii)	Explain the types of fault with neat sketches.	(6)
	•		(iii)	Write short notes on magnitude of earthquake.	(4)
				Or	
•		(b)	(i)	Explain the types of earthquake.	(10)
			(ii)	Explain the seismogram with neat sketch.	(6)
	14.	(a)	(i)	What are the concepts of peak ground acceleration?	(10)
·			(ii)	Explain the response spectrum IS 1893:2002 with neat sketch.	(6)
	•	•		\mathbf{Or}	
		(b)	(i)	Write short notes on the two main categories of liquefaction of s	oil. (6)
			(ii)	Briefly describe any five methods to reduce liquefaction of soil.	(10)
•	15.	(a)	Brie of bu	fly describe the type of plan irregularities and vertical irregular ildings with neat sketches.	ities
				Or	· •
•		(b)	(i)	Write short notes on any one type of dampers with neat sketch.	(4)
			(ii)	Write the step by step procedure for seismic analysis of buildings.	RC (12)
				· · · · · · · · · · · · · · · · · · ·	

•

•

•