

			T		,	<u> </u>	i -		• •		
Reg. No.:											
•	<u> </u>	<u></u>	<u>L.,,</u>	<u> </u>	L	<u> </u>		<u> </u>			

Question Paper Code: 21209

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Fifth Semester

Civil Engineering

CE 2305/CE 54/10111 CE 505 — FOUNDATION ENGINEERING

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What is the objective of site exploration?
- 2. What is site reconnaissance?
- 3. What is ultimate bearing capacity?
- 4. What is net pressure intensity?
- 5. What is safe bearing pressure?
- 6. What is total settlement of a footing?
- 7. What are Anchor piles?
- 8. What are fender piles?
- 9. What is earth pressure at rest?
- 10. What is surcharge angle?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Explain any two Geophysical methods of site exploration.

Or

(b) Explain any two types of soil samplers.

12. (a) Determine the depth at which a circular footing of 3.30 m diameter be found to be provided to carry a safe load of 1500 kN with a factor of safety of 2.40. The foundation soil has $C = 9kN/m^2$; $8 = 18kN/m^2$. Use Terzaghi's analysis.

Or

- (b) A raft foundation 10.5 m wide and 12.30 m long is to be constructed in a clayey soil having a shear strength of 11.40 kN/m². Unit weight of soil is 15 kN/m³. If the ground surface carries a surcharge of 19.50 kN/m², calculate the maximum depth of foundation to ensure a factor of safety of 1.20 against base failure. N₀ for clay is 5.70.
- 13. (a) Explain the pile load test to determine the load carrying capacity of a pile.

Or

- (b) Explain the various stages involved in the construction of under reamed pile foundation.
- 14. (a) Explain the design procedure of rectangular combined footing.

Or

- (b) Explain the design procedure of mat footing.
- 15. (a) Explain the Rankine's theory for the cases of Cohesionless backfill.

Or

(b) Explain the Coulomb's wedge theory of earth pressure with a neat sketch.