

		National Control			
Reg. No.:					

Question Paper Code: 65109

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Software Engineering

EMA 004 — NUMERICAL METHODS

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the formula for bisection method.
- 2. What is the criterion for the convergence in Newton Raphson method?
- 3. What is basic principle involved in triangularisation method?
- 4. By Gauss elimination method solve : x + y = 2; 2x + 3y = 5.
- 5. State Lagrange's formula to find y(x) if three sets of values (x_0, y_0) , (x_1, x_2) are given.
- 6. State any two properties of divided differences.
- 7. What is the order of error in Simpson's rule?
- 8. State Trapezoidal rule to evaluate $\int_{x_0}^{x_n} f(x)dx$.
- 9. Find y(0.1) by Euler's method, given $\frac{dy}{dx} = 1 y$ y(0) = 0.
- 10. Define Initial and boundary value problem.

PART B - (5 × 16 = 80 marks)

11. (a) Find a real root of the equation $x^3 - 3x + 1 = 0$ lying between 1 and 2 correct to three places of decimals by using bisection method.

Or

- (b) Find a root of the equation $x^3 3x 5 = 0$ by the method of false position.
- 12. (a) Solve the following system of equation by Gauss Jordan method:

$$x + y + z = 9$$

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

Or

(b) Solve the following system of equations using Gauss Seidel iteration method:

$$10x + 2y + z = 9$$

$$x + 10y - z = -22$$

$$-2x + 3y + 10z = 22$$

13. (a) Using Newton's divided difference formula evaluate f(8) given that

- · ·
- 4
- 7
- 11

13

2028

- f(x):
- 48 100
- 294
- 1210

Or

10

900

(b) Use Lagrange's formula to find the value of y at x = 6 from the data:

- x:
- 3
- 9 10

- *y*:
- 168 120
- 72 63

14. (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h=0.2. Hence determine the value of π .

Or

2

(b) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$, using Simpson's $\frac{1}{3}$ and $\frac{3^{\text{th}}}{8}$ rule.

15. (a) Using Taylor's method, find y(0.1) correct to 3 decimal places from $\frac{dy}{dx} + 2xy = 1, \ y_0 = 0.$

Or

(b) Use Runge-Kutta method of fourth order find y(0.1), y(0.2) and y(0.3), given that $\frac{dy}{dx} = 1 + xy$; y(0) = 2.