21/5/13 FA

	-	 				
Dog No.	100 000		11		5	11
Reg. No.:						
					-	

Question Paper Code: 65193

5 year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2013.

Fourth Semester

Software Engineering

EMA 005 — DISCRETE MATHEMATICS

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- 1. Define negation and conjunction.
- 2. Obtain the principal conjunctive normal form of

$$(P \wedge Q) \vee (P \wedge R)$$

- 3. Define equivalence relations.
- 4. Define the composition of two functions.
- 5. Define subgroup.
- 6. What is meant by group homomorphism?
- 7. Define ring.
- 8. Define polynomial ring.
- 9. State the properties of lattices.
- 10. Define a Boolean algebra with an example.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Construct the truth table for $(P \lor Q) V P$. (8)

(ii) Obtain a conjunctive normal for of the following formula $\neg (P \lor Q) \rightleftharpoons (P \land Q)$. (8)

	Alar A	(ii)	Show that $(x)(p(x) \to Q(x) \land x(Q(x) \to R(x)) \Rightarrow (x)(P(x) \to R(x))$. (8)
12.	(a)	(i)	Let $X = \{1, 2,7\}$ and $R = \{\langle x, y \rangle / x - y \text{ is divisible by } 3\}$ show that R is an equivalence relation. Draw the graph of R . (8)
		(ii)	Let R and S be two relations on a set of positive integers I :
			$R = \{\langle x, 2x \rangle / x \in I \}, S = \{\langle x, 7x \rangle / x \in I \} \text{ find } R \circ S, R \circ R, R \circ R \circ R \text{ and } R \circ S \circ R \text{ .} $ $\tag{8}$
			Or
	(b)	(i)	If X and Y are finite sets, find a necessary condition for the existence of one-to-one mappings from X to Y . (8)
		(ii)	Let F_x be the set of all one-to-one onto mappings from X on to X , where $X = \{1, 2, 3\}$. Find all the elements of F_x and find the inverse of each element. (8)
13.	(a)	(i)	Show that in a group $\langle G, * \rangle$, if for any $a, b \in G$, $(a*b)^2 = a^2 * b^2$,
			then $\langle G, * \rangle$ must be abelian. (8)
		(ii)	Show that the set of all elements a of a group $\langle G, * \rangle$ such that
			$a * x = x * a$ for every $x \in G$ is a subgroup of G . (8)
			Or
	(b)	(i)	Show that if $\langle G, * \rangle$ is a cyclic group, then every subgroup of $\langle G, * \rangle$ must be cyclic. (8)
		(ii)	Find the left cosets of $\{[0],[3]\}$ in the group $\langle z_6 +_6 \rangle$. (8)
14.	(a)	(i)	Explain ring homomorphism with an example. (8)
		(ii)	Show that the ring of even integers is a subring of the rings of integers. (8)
		L	Or
	(b)	(i)	Show that $\langle i, \oplus, \odot \rangle$ is a commutative ring with identity, where the operations \oplus and \odot are defined, for any $a, b \in I$, as $a \oplus b = a + b - 1$ and $a \odot b = a + b - ab$. (8)
		(ii)	For any integer m , show that $\big\{xm/x\in I\big\}$ is a subring of the ring of integers. (8)

(b) (i)

Show that $S \vee R$ $(P \vee Q) \wedge (P \to R) \wedge (Q \to S)$.

is tautologically

implied

by (8)

65193

Show that the operations of meet and join on a lattice are 15. (a) (i) commutative, associative and idempotent. (8)(8)Show that in a lattice if $a \le b$ and $c \le d$, then $a * c \le b * d$. (ii) Or Find the complements of every element of the lattice $\left\langle S_{n},\,D\right\rangle$ for (b) (i) (8)n = 75. Simplify the following Boolean expression (ii) $(a*b)' \oplus (a \oplus b)'$ and (4) (1) $(a'*b'*c) \oplus (a*b'*c) \oplus (a*b'*c').$ (4)(2)

65193

3