22/6/13 FM

Reg. No.:			

Question Paper Code: 65002

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2013.

First Semester

Software Engineering

XCS 112/10677 SW 102 - TRIGNOMETRY, ALGEBRA AND CALCULUS

(Common to 5 year M.Sc. Information Technology and 5 year M.Sc. Computer Technology)

(Regulation 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. State Demoivre's theorem.
- 2. Define $\sin hx$ and $\cos h^{-1}x$.
- 3. Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{pmatrix}$.
- 4. What are the applications of Cayley-Hamilton theorem?
- 5. If U = xy and $x = e^t$, $y = e^{-t}$, find $\frac{du}{dt}$.
- 6. Find the Jacobian of the transformations $x = r \cdot \cos \theta$ and $y = r \cdot \sin \theta$.
- 7. Prove that $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx.$
- 8. Write down the formula to find the length of the arc of the curve y = f(x) between x = a and x = b.
- 9. Find the particular Integral for $(D^2 + a^2)y = \sin ax$.
- 10. Give the general form of Legendre's linear equation.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Prove that $(1 + \cos \theta + i \cdot \sin \theta)^n + (1 + \cos \theta i \cdot \sin \theta)^n = 2^{n+1} \cdot \cos^n \left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{n\theta}{2}\right).$
 - (ii) If $\sin \theta = \tan hx$, prove that $\tan \theta = \sin hx$.

Or

- (b) (i) Express $\frac{\sin 7 \theta}{\sin \theta}$ in terms of powers of $\sin \theta$.
 - (ii) Separate into the real and imaginary parts of $tan^{-1}(x+iy)$.
- 12. (a) (i) Test for consistency and hence solve : $x+y+z=6, \ x+2y-2z+3=0, 2x+3y+z=11 \ .$
 - (ii) Find the eigen values and the eigen vectors of $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.

Or

- (b) Reduce the following quadratic form into canonical form : $3x_1^2 + 5x_2^2 + 3x_3^2 2x_1x_2 2x_2x_3 + 2x_3x_1.$
- 13. (a) (i) If $Z(x+y) = x^2 + y^2$, prove that $\left(\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)^2 = 4\left(1 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)$.
 - (ii) Obtain the Taylor's series of $x^3 + y^3 + xy^2$ in powers of x-1 and y-2.

Or

- (b) (i) If $U = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$, find the value of $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y}$.
 - (ii) Find the maxima and minima of $x^3y^2(1-x-y)$.
- 14. (a) (i) Find a reduction formula for $\int \sin^n x \, dx$.
 - (ii) Find the area of the loop of $ay^2 = x^2(a-x)$.

Or

- (b) (i) Evaluate: $\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx$.
 - (ii) Find the volume of a sphere of radius "a" units.
- 15. (a) (i) Solve: $\frac{d^2y}{dx^2} + 7 \cdot \frac{dy}{dx} + 12 \ y = x^2$.
 - (ii) Solve: $\frac{dx}{dt} y = t$, $\frac{dy}{dt} + x = \sin 3t$.

Or

3

- (b) (i) Solve: $(D^2 6D + 9)y = e^{-x} \cdot \cos 2x$.
 - (ii) Solve: $x^2y'' 4xy' + 6y = \log x$.