

Reg. No.:	ion E	1 22 22 3	3. H	

Question Paper Code: 65102

5 Year M.Sc. DEGREE EXAMINATION, MAY/JUNE 2013.

First Semester

Computer Technology

ECT 011/ ESE 012/ EIT 021 - DIGITAL PRINCIPLES

(Common to : 5 Year M.Sc. Information Technology/ 5 Year M.Sc. Software Engineering)

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

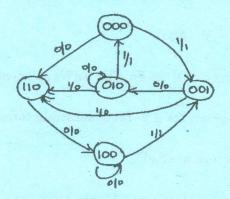
PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Convert Gray code 11011 to equivalent binary code.
- 2. Simplify y=((AB)' + A' + AB)'.
- 3. Convert to POS given SOP of F= a'b'c +a'b'c+a'bc+ab'c+abc.
- 4. Draw the logic diagram for a 2- bit magnitude comparator.
- 5. Why is state reduction needed?
- 6. Differentiate between Moore and Mealy Machine.
- 7. Compare counter and Register.
- 8. What is a buffer register?
- 9. Define cycles and Races.
- 10. State the Fundamental mode of operation.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Draw equivalent of all basic gates using only NAND Gates. (5)
 - (ii) State and explain Demorgan's Theorem. (6)
 - (iii) State the Principle of Duality. (5)

Or


- (b) What is the need for codes? List its Advantages and Applications? Explain the various codes with suitable examples. (16)
- 12. (a) (i) Write the HDL code for Decimal Adder. (8)
 - (ii) Obtain the minimal SOP and POS for $F = \sum m(1,3,4,5,6,7,9,12,13)$.(8)

Or

- (b) (i) Write the HDL code for an Encoder. (8)
 - (ii) Minimize the following Boolean expression using k-map and realize it using basic gates $F = \sum m(1,3,5,9,11,13)$. (8)
- 13. (a) (i) Design a serial Adder. Obtain the logic diagram, derive the truth table and draw the timing diagram.
 - (ii) Explain the operation of a JK Flip flop.

Or

(b) Implement the following state diagram using D flip - flop.

- 14. (a) (i) Draw the 4 bit universal shift register using multiplexer and D flip-flop and explain. (8)
 - (ii) Design a 3 bit binary counter using T flip flop. (8)

Or

- (i) Explain Data transfer between register (6)
- (ii) Design a binary up-down counter. (10)

Design a T flip-flop using logic gates. 15. (a)

(16)

Deign an Asynchronous sequential circuit with two inputs X and Y, and one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, (b) the output does not change for any change in X. Use SR latch for implementing the circuit.

65102