

			_				
Reg. No.:							
1008.110	<u> </u>	İ	 [

Question Paper Code:23573

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Mechanical Engineering

ME 1201/ME 1202/070120006 — ENGINEERING THERMODYNAMICS

(Common to Production Engineering)

(Regulation 2004/2007)

(Common to B.E. (Part-Time) Second Semester — Mechanical Engineering — Regulation 2005)

Time: Three hours

Maximum: 100 marks

(Use of standard steam table, Mollier diagram and psychometric chart permitted)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Differentiate between characteristic gas constant and universal gas constant.
- 2. Define a quasi static process.
- 3. What is the significance of Clausius inequality?
- 4. How does the second law of thermodynamics overcome limitations of first law of thermodynamics?
- 5. What are the advantages of superheated steam?
- 6. Write the limitations of maximum and minimum temperatures in a steam power cycle.
- 7. What is the significance of Maxwell relations?
- 8. What is the fundamental property of gases with respect to the product pv?
- 9. Define relative humidity and specific humidity.
- 10. Define degree of saturation.

PART B - (5 × 16 = 80 marks)

11.	(a)	(i)	Prove that the difference between the two temperatures in Cles	sius
			scale is same as that in Kelvin scale.	(8)
		(ii)	How is the first law of thermodynamics applied to a closed syst	tem
			undergoing a non-cyclic process?	(8)
			\mathbf{Or}	
	(b)	(i)	Show that internal energy is property.	(8)
		(ii)	A compressed air bottle of volume 0.15 m ³ contains air at 40 and 27°C. It is used to drive a turbine which exhausts to atmosph at 1 bar. If the pressure in the bottle is allowed to fall to 2 ledetermine the amount of work that could be delivered by turbine.	iere bar,
12 .	(a)	(i)	Show the equivalence of two statements of second law	of
			thermodynamics.	(8)
		(ii)	Why Carnot cycle is a theoretical cycle? Explain.	(8)
			\mathbf{Or}	•
	(b)	(i)	State Carnot theorem. Also prove it.	(8)
		(ii)	Explain the entropy of universe is increasing. Calculate the char	nge
	•		in entropy of air, if it is throttled from 5 bar, 27°C to 2	bar
	•		adiabatically.	(8)
13.	(a)	Deri	ve the expressions for the following:	
		(i)	Work of evaporation or external work of evaporation.	(4)
		(ii)	True latent heat.	(4)
		(iii)	Internal energy of steam.	(4)
		(iv)	Entropy of water.	(4)
			$\bigcap_{\mathbf{T}}$	

2

(ii) A steam power plant uses steam as working fluid and operates at boiler pressure of 5 MPa, dry saturated and a condenser pressure of 5 kPa. Determine the cycle efficiency for (1) Carnot cycle (1) Rankine cycle. Also show the T-s representation for both the cycle (1) 14. (a) Write short notes on the following: (i) Clapeyron – Clausius equation. (ii) Dalton's law of partial pressure.	8) a of 2) s. 8)
boiler pressure of 5 MPa, dry saturated and a condenser pressure of 5 kPa. Determine the cycle efficiency for (1) Carnot cycle (2) Rankine cycle. Also show the T-s representation for both the cycle 14. (a) Write short notes on the following: (i) Clapeyron – Clausius equation. (ii) Dalton's law of partial pressure.	of 2) s. 8)
14. (a) Write short notes on the following: (i) Clapeyron – Clausius equation. (ii) Dalton's law of partial pressure.	8) 6)
14. (a) Write short notes on the following: (i) Clapeyron – Clausius equation. (ii) Dalton's law of partial pressure.	6)
(ii) Dalton's law of partial pressure.	
	E)
(iii) Joule – Thomson coefficient.	5)
	5)
\mathbf{Or}	-
(b) (i) Derive an expression for change in entropy of a as obeying Vand Waals equation of state.	er 8)
(ii) Show that for an ideal as the internal energy depends only on i temperature.	ts (8)
15. (a) Two streams of moist air, one having flow rate of 3 kg/s at 30°C and 30 relative humidity, other having flow rate of 2 kg/s at 35°C and 85 relative humidity get mixed adiabatically. Determine specific humidiand partial pressure of water vaporafter mixing. Take Cp, stream = 1.8 kJ/kg.K.	ty
Or	
(b) Determine partial pressure of vapour and relative humidity in the atmospheric air having specific humidity of 16 gm/k of air and 25°C DB (1	he T. (6)