12/1/2 (1)

Reg. No.:										

Question Paper Code: 71872

M.E. DEGREE EXAMINATION, JUNE/JULY 2013.

Elective

VLSI Design

VL 9251/VL 951/10244 VLE 22 – TESTING OF VLSI CIRCUITS

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Draw a possible model for compiled simulation for the given Latch.

- 2. Find a circuit that has an undetectable stuck fault.
- 3. What is back tracking?
- 4. Define the D-frontier for the q-v algorithm.
- 5. What are the design values of LSSD network?
- 6. List out the attributes associated with the use of scan designs.
- 7. Which is the problem addressed by BIBLO?
- 8. In a CATSBIST architecture, why is it necessary that all storage cells be initialized to a known state before executing a test?
- 9. Define the basic guided probe procedure.
- 10. Consider a f-bit Hamming single-error correction code. For each of the following, assuming at most a single-bit error determine the erroneous bit if any 0101100, 0101101, 0111101.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) For the given circuit (Fig. 11(a))
 - (i) Find the set of all tests that detect the fault $a \ s-a-o$.
 - (ii) Find the set of all tests that detect the fault b s a o.
 - (iii) Find the set of all tests that detect the multiple fault $\{as-a-o,bs-a-o\}$.

Fig. 11(a)

Or

- (b) Draw the general structure for event-driven simulation with an algorithm and perform the activation of an already scheduled gate. Also design an algorithm with one pass strategy for processing the changes in multiple inputs.
- 12. (a) Generate test sequences for SSF in synchronous sequential circuits with JK flip flop using iterative array models.

Or

- (b) Prove that the test set generated by using procedure CPTGFF for a fan out-free circuit is complete for SSFS.
- 13. (a) What is partial scan? How is it done using I paths? Show the structures and the logic block to be tested using I-path partial scan.

Or

(b) Consider a random-access scan architecture. How would you organize the test data to minimize the total test time? Describe a simple heuristic for ordering these data.

14. (a) How do you classify the off-line BIST architectures? What are the key elements of it? Explain with examples.

Or

- (b) (i) Analyze the operation and performance of CEBS. (8)
 - (ii) What are the three phases involved in the testing of circular self-test path? Analyze the performance with a general form of design.
- 15. (a) Consider the following design of a (Fig. 15(a)) K-bit equality checker $(K \ge 3)$ to determine the equivalence of two words (a_1, a_2, a_k) and (a_1^1, a_2^1, a_k^1). The circuit has two outputs f_K and g_K defined by the recursive equations

$$f_{K} = f_{K-1}b_{K} + g_{K-1}\alpha_{K}$$
$$g_{K} = f_{K-1}\alpha_{K} + g_{K-1}b_{K}$$

where $b_K = \overline{a}_K^1$ and f_2 and g_2 are defined in the figure. Verify that this circuit is totally self-checking for all single stack fault?

Fig. 15(a)

Or

- (b) Consider a system whose diagnostic graph has five nodes $\{0,1,2,3,4\}$ and an edge from i to (i+1) mod 5 and from i to (i+2) mod 5 for all i.
 - (i) Prove that such a system is one-step two-fault diagnosable and sequentially two-fault diagnosable.
 - (ii) What is the maximum number of edges that can be removed from this graph so that it is still one-step two-fault diagnosable, or so that it is still sequentially two-fault diagnosable?