

Reg. No.:							
		Contract of the second	A STATE OF THE PARTY OF THE PAR				

Question Paper Code: 71188

M.E./M.Tech. DEGREE EXAMINATION, JUNE/JULY 2013.

First Semester

Computer Science and Engineering

CS 9212/CS 912 — DATA STRUCTURES AND ALGORITHMS

(Common to M.Tech. - Information Technology and M.Tech. Information and Communication Technology)

(Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define the black height of a node. 1.
- The contents of an Array A are the elements {1, 2,..5}. Draw the initial tree to 2. contain it and then sequence of trees resulting finally in a MAX - HEAP.
- Show that if a node in a BST has two children then its successor has no left 3. child and its predecessor has no right child.
- The following sequence list the nodes of a Binary tree T in Preorder and 4. Inorder respectively:

Preorder: 1, 2, 3, 5, 8, 9, 6, 10, 4, 7

Inorder : 2, 1, 8, 5, 9, 3, 10, 6, 7, 4

Construct a Binary Tree.

- Where can you find the smallest 3 elements in a MIN-HEAP? 5.
- Show that the total number of nodes in a Complete Binary Tree of depth is 6. $2^{d+1}-1$.
- List out the advantage of Dynamic Programming over Greedy. 7.
- 8. Define NP- Complete Problem.
- What is Minimum Spanning tree? Write any two algorithm to find MST. 9.
- What is the purpose of Dijikstra's Algorithm? 10.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Give an algorithm to reverse the elements of a single linked without using a temporary list.	lists (6)
		(ii)	Write algorithm to insert into and delete elements from a dollinked list.	oubly (6)
		(iii)	Write an algorithm to count the number of nodes in a given silinked list.	ingly (4)
			Or	
	(b)	(i)	Give the procedure to construct a stack with two Queue.	(8)
		(ii)	Describe the case analysis for Fibonacci series using recursion.	(8)
12.	(a)	(i)	Construct a min binomial heap with the following elements.	
			3, 6, 8, 2, 16, 22, 14, 30, 9, 11	(12)
		(ii)	Why heaps are used to implement priority queue?	(4)
			Or	
	(b)	To 100 100 100 100 100 100 100 100 100 10	lain Fibonacci Heap Deletion and Decrease Key operation useding-Cut procedure with an example.	using (16)
13.	(a)		ain insertion procedure in Red-Black tree and Insert the followence:	wing
		{ 20,	10, 5, 30, 40, 57, 3, 2, 4, 35, 25, 18, 22, 21}	(16)
			Or	
	(b)	(i)	Show the result of inserting 10, 17, 2, 4, 9, 6, 8 into an empty tree.	AVL (8)
		(ii)	Write the procedure to implement single and double rotations winserting nodes in an AVL tree.	while (8)
14.	(a)	(i)	State and Explain the algorithm to perform Quick sort.	(8)
		(ii)	Illustrate the operation of Quick sort on the following numbers	
			A = {77, 44, 99, 66, 33, 55, 88, 22, 44}	(8)
			Or	
	(b)	on th	trate with procedure to find an optimal placement for 13 programee tapes T0, T1 and T2 where the programs are of lengths 12, . 5, 18, 26, 4, 3, 11, 10 and 6.	

15. (a) Develop an algorithm for implementing '8 Queen Problem' using BACKTRACKING method. (16)

Or

(b) Explain 0/1 knapsack problem procedure with an example using dynamic programming. (16)

71188

3