2×10/10 Ey

			The state of the s	0
Reg. No.:				4

Question Paper Code: 71437

M.E./M.Tech. DEGREE EXAMINATION, JUNE/JULY 2013.

First Semester

Communication Systems

MA 9218/MA 909 — APPLIED MATHEMATICS FOR COMMUNICATION ENGINEERS

(Common to M.E., Computer and Communication, M.E. Digital Signal Processing, and M.Tech. Information and Communication Technology)

(Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Prove that $J_{-n}(x) = (-1)^n J_n(x)$.
- 2. State the orthogonality property of Bessel functions.
- 3. State the singular value decomposition theorem.
- 4. Discuss the nature of the matrix $A = \begin{bmatrix} 4 & 10 & 14 \\ 10 & 41 & 59 \\ 14 & 59 & 94 \end{bmatrix}$.
- 5. Find the mean of the Geometric distribution.
- 6. If X is a uniform random variable in [-2,2] find the pdf of X and Var(X).
- 7. Prove that the correlation coefficient always lies between -1 and 1.
- 8. If the joint pdf of the random variables (x,y) is given by $f(x,y) = kxye^{-(x^2+y^2)}$, x > 0, y > 0 find the value of K.

- 9. Define Markovian queueing models.
- 10. Give an example of a queue with infinite number of servers.

PART B $-(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Prove that $\frac{d}{dx} [x^{-n}J_n(x)] = -x^n J_{n+1}(x)$. (8)
 - (ii) Prove that $\frac{x}{2} = J_1(x) + 3J_3(x) + 5J_5(x) + \dots \infty$. (8)

Or

- (b) (i) Prove that $J_0^2(x) + 2[J_1^2(x) + J_2^2(x) + J_3^2(x) + \dots] = 1$. (8)
 - (ii) Express $J_{\frac{3}{2}}(x)$ and $J_{-\frac{5}{2}}(x)$ in closed form. (8)
- 12. (a) (i) Find the Cholesky factorization of this real, symmetric and positive definite matrix $A = \begin{bmatrix} 4 & 10 & 14 \\ 10 & 41 & 59 \\ 14 & 59 & 94 \end{bmatrix}$. (8)
 - (ii) Find the QR factorization of this matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}$. (8)

Or

- (b) (i) Find the singular value decomposition of $A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$. (8)
 - (ii) Find the least squares solution of the system $x_1 + 4x_2 = 1$, $2x_1 + 5x_2 = 1$, $3x_1 + 6x_2 = -2$. (8)
- 13. (a) (i) Derive the MGF of Poisson distribution and hence derive its mean and variance. (8)
 - (ii) The weekly wages of 1000 workmen are normally distributed around a mean of Rs. 70 with a SD of Rs. 5. Estimate the number of workers whose weekly wages will be
 - (1) between Rs. 69 and Rs. 72,
 - (2) Less than Rs. 69
 - (3) More than Rs. 72. (8)

Or

(b)	(i)	A machine manufacturing screws is known to produce 5% defective. In a random sample of 15 screws, what is the probability that there are
		(1) Exactly three defectives (8)
		(2) not more than 3 defectives.
	(ii)	Let X be a continuous random variable with pdf
		$f(x) = \begin{cases} \frac{x}{2} & in 1 < x < 5 \\ 0 & elsewhere \end{cases}$
		find the probability density function of $Y = 2X - 3$. (8)
(a)	(i)	The two dimensional random variable (X,Y) has the joint density function
		$f(x,y) = \frac{x+2y}{27}$, $x = 0,1,2$; $y = 0,1,2$. Find the marginal
		distributions. Also find the conditional distribution of Y for $X = x$ and the conditional distribution of X given $Y = 1$. (8)
	(ii)	Find the co – efficient of correlation between industrial production and export using the following data: (8) Production (X) 55 56 58 59 60 60 62
		Export (Y) 35 38 37 39 44 43 44
		Or
(b)	(i)	If the joint pdf of X and Y is given by
		$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y), & 0 < x < 2, & 2 < y < 4 \end{cases}$
		0, elsewhere
		Find (1) P(X 1 X 2)
		$(1) P(X < 1 \cap Y > 3)$
	(**)	(2) $P(X < 1/Y > 3)$. (8)
	(ii)	If X and Y are independent random variables each normally following $N(0,2)$, find the probability density function of $Z = 2X + 3Y$. (8)
(a)	(i)	If customers arrive at a counter in accordance with a Poisson process with a mean rate of 3 per minute, find the probability that the interval between 2 consecutive arrivals is
		(1) more than 1 minute

14.

15.

(2)

(3)

(8)

between 1 minute and 2 minutes

4 minutes or less.

- (ii) A self service stores employs one cashier at its counter. Nine customers arrive on an average of 5 minutes, while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential distribution for service rate find
 - (1) average number of customers in the system
 - (2) average number of customers in the queue
 - (3) average time customer waits before being served
 - (4) average time a customer spends in the system. (8)

Or

- (b) (i) Customers arrive at a watch repair shop according to Poisson process at a rate of one per every 10 minutes and the service time is an exponential random variable with mean 8 minutes. Find the average number of customers, the average waiting time a customer spends in the shop and the average time a customer spends in the queue. (8)
 - (ii) A supermarket has two servers servicing at counters. The customer arrive in a Poisson fashion at the rate of 10 per hour. The service time for each customer is exponential with 4 mean minutes. Find the probability that a customer has to wait for the service, average queue length, and the average time spent by a customer in the queue. (8)

71437