10/6/3 Fd

Reg. No.:				
	1		1	

Question Paper Code: 71084

M.E. DEGREE EXAMINATION, JUNE/JULY 2013.

Second Semester

Computer Aided Design

CC 9221/CC 921/ED 972/UED 9172/10222 EDE 61 — DESIGN FOR MANUFACTURE, ASSEMBLY AND ENVIRONMENTS

(Common to M.E. CAD/CAM, M.E. Engineering Design and M.E. Product Design and Development)

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are modifiers with respect to geometric tolerances? How is it represented in drawings?
- 2. What is critical process capability ratio? Mention its uses.
- 3. List down the four important group foci points influencing design.
- 4. Mention any four general rules in form design of welded members.
- 5. How is reduction in machined area achieved in component design? Give an example.
- 6. What is design for machinability?
- 7. Write down the general guidelines for selection of parting surfaces in sand casting process.
- 8. What points are to be borne in mind by the designer while redesign of cast members or modify the design of castings?
- 9. Why DFE is important?
- 10. What is design for recycling? Give one example.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Distinguish between functional datum and manufacturing datum. Discuss the steps involved in changing the datum with a suitable example.

Or

(b) Discuss the steps involved in the attainment of assembly limits with a suitable example.

12. (a) How is the various possible solutions found for design problems to be solved? How is the best solution found? Illustrate with a suitable example.

Or

- (b) Discuss in detail on the influence of materials on form design with suitable examples.
- 13. (a) Discuss at least four design features to facilitate machining with suitable sketches.

Or

- (b) (i) Explain how component design facilitates machining with suitable sketches. (8)
 - (ii) Explain how component design facilities economy, clampability, accessibility and assembly with suitable examples. (8)
- 14. (a) Indicate the probable parting line for the fulcrum lever in Figure 1 and briefly state the reasons for the choice. Show two design modifications which, whilst maintaining as a similar weight and stability of casting, will reduce or eliminate the need for sand cores.

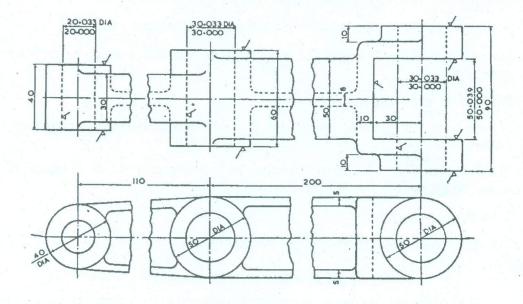


Fig. 1 FULCRUM LEVER - CI

Or

2

	(b)	Write a note on the following.					
		(i) Group technology	(8)				
		(ii) Computer applications for DFMA.	(8)				
15.	(a)	Explain the basic method of life cycle assessment for a product.					
		Or					
	(b)	Write a note on the following:					
		(i) Design of minimize material usage	(8)				
		(ii) Design for energy efficiency.	(8)				

3 71084