

Reg. No.:			100	ar Ban		184	

Question Paper Code: 71431

M.E. DEGREE EXAMINATION, JUNE/JULY 2013.

First Semester

Structural Engineering

MA 9212/MA 9321/MA 903/UMA 9103/10211 AM 101 — APPLIED MATHEMATICS

(Common to M.E. Soil Mechanics and Foundation Engineering)

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Prove that Laplace Transform is linear.
- 2. State modulation property on Fourier Transform.
- 3. State any two properties of harmonic functions.
- 4. Write down the two dimensional Laplace equation in polar co-ordinates.
- 5. Define functional and give an example.
- 6. State the Brachistochrone problem.
- 7. Define Eigen value of a matrix.
- 8. What is the use of Faddeev-Leverrier method?
- 9. What is the physical meaning of $\int_a^b f(x) dx$?
- 10. What is the order of error in Trapezoidal rule of integration?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) A string is stretched and fixed between two points (0,0) and (l,0).

Motion is initiated by displacing the string in the form $u = \lambda \sin\left(\frac{\pi x}{l}\right)$ and released from rest at time t = 0. Find the displacement of any point on the string at any time 't'. (16)

Or

(b) Solve the heat conduction problem using Fourier transform described by $PDE: k\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, 0 < x < \infty, t > 0$

B.C's: $u(0,t) = u_0, t \ge 0$

I.C's: $u(x,0) = 0, 0 < x < \infty$

u and $\frac{\partial u}{\partial x}$ both tend to zero as $x \to \infty$. (16)

12. (a) Solve the following Neumann problem described by:

PDE : $u_{xx} + u_{yy} = 0$, $-\infty < x < \infty$, y > 0

BC's: $u_{v}(x,0) = f(x), -\infty < x < \infty,$

u is bounded as $y \to \infty$,

u and $\frac{\partial u}{\partial x}$ both vanish as $|x| \to \infty$.

Or

- (b) Using the method of integral transform, solve the following potential problem in the semi-infinite strip described by $u_{xx} + u_{yy} = 0$, $0 < x < \infty$, 0 < y < a subject to u(x,0) = f(x), u(x,a) = 0, u(x,y) = 0, in 0 < y < a, $0 < x < \infty$ and $\frac{\partial u}{\partial x}$ tends to zero as $x \to \infty$.
- 13. (a) (i) Find the extremal of the functional $\int_{0}^{\pi} \left(4y\cos x + {y'}^{2} y^{2}\right) dx$ with y(0) = 0, $y(\pi) = 0$. (8)
 - (ii) Find the extremal of the functional $I(y,z) = \int_{0}^{1} (y'^{2} + z'^{2} + 2y) dx$ with y(0) = 1, y(1) = 3/2, z(0) = 0 and z(1) = 1. (8)

Or

2

- (b) (i) Find the shortest distance between the circle $x^2 + y^2 = 1$ and the straight line x + y = 1 using calculus to variations. (8)
 - (ii) Find the extremal of the functional $V = [y(x)] = \int_{x_0}^{x_1} (2xy + y'''^2) dx$. (8)
- 14. (a) Using power method, find the dominant eigen value and the corresponding eigen vector of $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Find also the least eigen value and hence the 3rd eigen value. (16)

Or

- (b) Using Rayleigh-Ritz method solve the equation y'' + x = 0 with y(0) = 0 = y(1) and compare your result with actual solution. (16)
- 15. (a) (i) Evaluate $\int_{-2}^{2} e^{-x/2} dx$ by Gaussian two point formula. (8)
 - (ii) Use Gaussian three point formula and evaluate $\int_{-1}^{1} (3x^2 + 5x^4) dx$. (8)

Or

(b) Using numerical method evaluate $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(x+y) \, dx dy$ and compare your result by actual integration. (16)